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Preface 

 
The world of cognition is entering an exciting new era. 
While cognitive activities had been mostly reserved for 
human beings in the past, current progresses in 
technologies and theories allow for transferring many of 
these human activities to artificial systems. The latter are 
becoming numerous, inexpensive and yet as fascinating 
as the other. 
The cognitics initiative involves two complementary 
approaches, each diametrically opposite and yet as 
fascinating the one as the other: 
• In one direction, the human being serves as a 

reference and defines the tasks to be realized and 
the purposes to be reached. Sometimes, the 
purpose is to replace the human, but it’s generally to 
assist him or her instead. 

• In the other direction, the metrics developed in the 
present, MCS theory, and the accuracy of analysis 
applied to artificial systems in order to design, 
repair, and improve them are useful for better 
revealing the cognitive properties of humans. 

I wrote this book for a broad public, and I discuss 
essentials rather than more detailed or applied elements, 
which I leave for other media, such as specialized 
conferences or scientific journals. The main goal here is 
that each reader can understand and make use of the 
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general results of present theory and comments in his or 
her everyday life. A second more focused goal relates to 
specialists, for whom it should help with the following: 
• Opening new ways for improving design and 

development of robots, computers, and automated 
systems in general (cognitics). 

• Improving knowledge of human nature (cognitive 
sciences) 

 
J.-D. Dessimoz 
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1. Introduction 

Humans have evolved, inventing an ever-larger variety 
of tools and methods. This has allowed them to grow in 
numbers, live longer, and explore an ever more 
diversified part of the world. 
Schematically speaking, over a time period, two kinds of 
progress have developed in rather independent ways: 
• One involving the immaterial world of ideas 
• The other involving the world of physical objects 

Only humans seemed to be capable of establishing a 
link between those two worlds, especially via spoken 
language, written systems, and drawing. Marginally 
speaking, it happened moreover via sculpture and 
architecture. 
During the twentieth century, the revolution of long-
distance communication has occurred, which the 
formalization of a first path between physical world and 
immaterial universe (theory of information) has 
accompanied. It was essential to establish a precise 
correspondence between ideas to communicate and 
physical objects supporting them (messages). This 
correspondence has been established in the information 
theory. 
Nowadays, a new stage opens up where machine-based 
systems cannot only pass, often very easily, from the 
physical world to the world of ideas and reciprocally. 
Moreover, it is even possible for such systems to: 
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• Process ideas on their own 
• Induce precedents and draw conclusions 
• Abstract, or, in contrast, elaborate concretizations 

(decide and create) 
This is the domain of cognitics, the automated taking on, 
by machines, of cognitive activities traditionally 
exclusively reserved to humans. 
In order to progress in cognitics, it is appropriate to 
rigorously define the essential concepts for the field as 
well as to set up a measuring system (specific metrics). 
The current theory, model for cognitive sciences (MCS), 
provides this. In the same way as it is easy to guess 
whether a human being can jump over the wall when he 
or she knows the height, it is very useful to have a 
metric, quantitative approach in the cognitive world as 
well. Publications of core concepts in this regard have 
already been made (R1–3) and especially a recent 
integrated work in French though (R4), mostly under the 
name of MCS theory. MCS includes an ontological 
approach in the fundamental meaning of the word. It is 
not just a computer-based structure with coherent 
internal definitions and relationships among concepts, 
but it aims to describe the very nature of things. In this 
theory, it also shows how limited any description may be 
and how to cope with these limitations. MCS is more 
than a glossary or a lexicon. Not only does it give 
definitions, but it also provides metric units and 
associated estimation formulas, ultimately reaching into 
the real world. I present MCS here in several sections. 
To reach easier understanding, I first give an overview of 
the chronological development stages of MCS. Then I 
sketch the main features of the model. Finally, in a 
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progressive and well-structured way, I examine each of 
the main concepts with precision. 
But before reaching the vast plains of cognitics, it is 
necessary to climb two classical passes, strangely much 
more difficult to cross than I initially thought. MCS theory 
is strongly based on the concept of information, originally 
defined by Claude Shannon (R5). It appears, however, 
that this classic basis (information) as well as older 
concepts yet (namely “model” and “memory”) require 
discussion from a cognition perspective. Subsequent 
cognitive entities, such as complexity, knowledge, 
expertise, or intelligence, inherit some underestimated 
yet crucial features of those classic concepts. Numerous 
discussions with many and varied masters of ceremony 
have convinced me that crossing these preliminary 
passes turns out a necessary condition for enjoying the 
new proposed landscape comfortably and without 
reserve. So I am about to accompany readers on 
grounds usually considered as very well-known, mostly 
the notions of information and model. 
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2. Familiar Grounds? 

Experience shows that most people actually do not yet 
know the concepts of “information” and “model” well, 
which, in principle, have been well established for 
decades or even millennia and are usually wrongly taken 
as well understood. So it is useful to visit these notions 
again. In order to underline critical properties of classical 
notions, we give various elements of theory that 
correspond to insufficiently known principles, under the 
subtitles of “theorems.” These classical notions will 
provide a firm basis to define new concepts in cognitics. 
Notice that we must intuitively approach some of the 
notions mentioned subsequently in the first phase. Then 
we can revisit them after we have seen the formal 
definitions introduced in the sequel. 

2.1 Information 
Definitions: 
Information allows the cognitive system (CS) that 
receives it to build up and update the representation 
he/she/it maintains for oneself of a certain cognitive 
domain, that is, his/her/its ad hoc model (figure 1). 
Intuitively, it could be said, “Information shapes opinion.” 
Messages convey information. Correspondence in a 
probability has defined the quantity of information that a 
message conveys. Essentially, it is related to the 
instantaneous expectation the CS has of incoming 
messages. When messages can be perfectly forecast, 
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information quantity is nil. If messages are very much 
unexpected, a large quantity of information is received. 
The fundamental function, which defines the quantity of 
information in a message (Q), dates back to the middle 
of twentieth century, and Claude Shannon provided it. 
A low probability actually corresponds to a lot of 
information. The mathematical function that describes 
this phenomenon is the inverse of probability of 
occurrence of the message: 
A low probability actually corresponds to a lot of 
information. The mathematical function that describes 
this phenomenon is first the inverse of probability of 
occurrence of the message1: 

Q= f (1/p).  Equation 1 

Moreover, it looks adequate that, if several messages 
occur, their respective information quantities add up. 
Now if considerations remain at the level of probabilities, 
the appropriate operation is multiplication. For example, 
if two independent signals have individual probabilities of 
occurrence of one-third, one-ninth denotes the chance 
that both occur simultaneously. In order to keep using 
simple additions, logarithms2 are required: 
 

                              
1 The fundamental definition is expressed, like here, for the 
case of discrete (discontinuous) messages. But in fact, this is 
not really a limit as pathways exist in order to extend it to other 
cases, such as, notably, continuous signals. 
2 The quantity of information conveyed by a message can be 
intuitively approached by counting how many significant zeroes 
are contained in the number expressing the occurrence 
probability of this message. See also Appendix C. 
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    bit . 

 

Equation 2 

In equation 2, the unit is the “bit,” a contraction of “BInary 
digiT,” referring to the base-2 selected for logarithm 
evaluation.3 We can observe that the formula gives a nil 
amount (0 bit) of information  for the case of messages 
that can be totally forecast (probability equal to one). 

 
 

Fig.1 Information. Information is conveyed by 
messages, which allow cognitive agents to form and 
update their opinion (model) relating to some subset 
of reality (domain)  

Comments: 
The classic definition of information is well established 
and does not need modification. Nevertheless, we 
should understand two of its essential properties: 
perishable and subjective characters. 

                              
3 In theory, logarithms with bases 10 and “e” have also been 
used, thus leading to “dit” and “nit” units. But in practice, these 
variants are not widespread. 
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Theorem 1: Information Is Immediately Perishable 

Proof: 
Equation 2 defines the quantity of information that a 
message conveys based on its probability of occurrence, 
as estimated before reception (i.e. “a priori”), by receiver. 
The formula gives a nil amount (0 bit) of information for 
the case of messages that can be totally forecast 
(probability equal to one).  
Now precisely, the purpose of all messages is to change 
this probability. Upon receiving what was previously just 
a probability for receiver transforms into certainty. After 
reception (i.e. “a posteriori”) the typical certainty of 
received message corresponds to a probability 
amounting to 1. Equation 2 gives 0 bit in these new 
circumstances. The message is now well-known, and it 
does not contain information any longer. 

Discussion: 
Let’s consider a cognitive domain corresponding to the 
single, random toss of a coin. Before receiving, two 
messages are possible: heads or tails. We expect a 
probability of one-half for each one. After the message 
arrives, however, respective probabilities change. The 
probability for one message (for example, heads) 
becomes 1 and 0 for the other message. For this unique 
toss, it is useless to repeat the message. Equation 2 
indeed gives a quantity of information amounting to 1 bit 
for the initial message and then 0 bit for all possibly 
repeated messages. 
It is important to understand this peculiarity of 
information. This contrasts with respect to experience 
gained with other metric units in the physical world. In 
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principle, repeating the estimation of a weight, length, or 
time always gives the same result in kilograms, meters, 
or seconds. Repeating the same message in the same 
circumstances does not bring any information any 
longer; 0 bit are contained in repeated messages from 
the receiver’s perspective. The following are some 
informal examples where the time-varying character of 
information plays a particularly obvious role: 
• In practice, the same person does not read the 

same newspaper twice. 
• It is usually poor judgment to tell the end of the 

movie to friends if they are about to go and watch it. 
• It is hard to prepare collectively and deliver a 

surprise for a person at a given point in the future. 
• Insiders are forbidden to perform stock exchanges 

operations. 

Theorem 2: Information Is Essentially Subjective 

Proof: 
Equation 2 gives the quantity of information in a 
message. It can be seen there that it is grounded on 
occurrence probability as the receiver estimates. So 
information has an essentially subjective character. 

Discussion: 
The objective property of received messages is not 
guaranteed at all by basis of equation 2. Intuitively, 
people tend to believe in such an objective character, 
especially for the two following reasons: 
• In simple technical domains, such as those for 

which the theory of information has first been 
developed, models are standardized and rigidly 
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defined in conformity for emitters and receivers in 
the framework of coherent systems. 

• In general, all members of a group have largely 
gained in life experiences similarly, so they tend to 
develop a certain uniformity of their respective 
models. 

Yet the very same message may simultaneously have 
as many different probabilities as there are different 
receivers. For example, in the domain of tossing a coin, 
let’s consider two very different receivers: 
• One typically estimates the probability of heads 

state to be one-half. 
• The second is a joker who has provided the coin, a 

special coin stamped heads on both side. 
For the latter player, the probability of receiving the 
heads message is already a priori amounting to 1 (100 
percent). In such a situation, the message (heads) 
conveys 1 bit of information to the first receiver and 0 bit 
to the second receiver. 
It is useful to take the critical role of receiver well into 
account. Even if information often seems to have a very 
objective property in practice, for example, when 
referring to measuring units or very common objects, a 
whole spectrum of situations exists, which sometimes 
also reach far toward the other extreme, for example, to 
so-called modern art objects or even Rorschach inkblot 
tests. 

2.2 The Notion of Model 

Definitions: 
A model is a simplified representation of reality, typically 
elaborated in order to reach a certain goal.  
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Discussion: 
Sometimes, correspondence with reality is not a strong 
constraint. It is then a question, by extension, of the 
representation of other, virtual worlds. As subsequently 
defined in the MCS model, in as much as a model allows 
for reaching a certain goal, it can be qualified as good for 
this goal. The correspondence link between model and 
reality defines the notion of sense, or meaning, which is 
essential for semantics. 

 
Fig. 2. Model or reality?  There is always a huge 
difference between a real object and any model adopted 
to describe it. Nor the picture (left) nor the map (right) 
are close to exhaustively describing the home of 
Robocup Congress in Atlanta (2007). 

Theorem 3: Information Requires the Notion of 
Model 

Proof: 
The very definition of information requires the notions of 
message and associated probability quantitatively 
estimated in a representation appropriate for the receiver 
(equation 2). This set of elements (messages, 
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probabilities, and appropriate representation) de facto 
constitutes a model (figure 2). 

Discussion: 
Temptation is constant for human beings to establish a 
direct bridge between cognitive world and reality. But 
this is practically impossible. Some philosophers, like 
Socrates, Kant, or Hegel, especially represent efforts 
made to formalize this problem and propose solutions. 
Socrates is forced to notice that the reach of our 
perceptions typically limits them to shadows and 
reflections on cave walls. Kant postulates the existence 
of categories already established for the human mind in 
prerequisite to any perception. For Hegel, the 
importance of representations is such as these 
constitute the main part of our world, going as far as 
rejecting reality, of which we can, in the extreme case, 
even doubt any existence. 
In our approach, similarly, it might be desirable to apply 
the metric technique defined for information estimation 
directly to reality, but this is impossible. We shall come 
back to this point in the discussion of theorem 4. 

Theorem 4: Subject to a Goal Reached in Similar 
Ways, the Preferred Model Is the Most False 

Proof: 
The essential quality expected from a model is that it 
allows for reaching a certain goal. With the fulfillment of 
this condition, the model can be defined as good. Now, if 
we can reach the goal in a similar way with a simpler 
model, that is, with a model that can be described with 
less information, the latter model is generally considered 
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as preferable. In order to get simpler, a model must 
ignore some aspects and become even less complete 
with respect to reality. And if a model is more 
incomplete, it must be globally considered as more false. 
So, subject to a goal being reached in a similar way, the 
preferred model is typically the most false. 

Discussion: 
It is a classic statement that theories should be simple 
(notably the “law of parsimony” or “Occam’s razor”). This 
is surely an attractive quality for a model. But in this 
formulation, the extent by which reality is abstracted, 
respectively ignored, remains hidden. Einstein with his 
word “Everything should be made as simple as possible, 
but not simpler” raises the veil a little on the risk of 
abstracting too much from reality. The difficulty grows if 
several goals are considered. A model adequately 
simple for one goal turns out too simple for another goal. 
Unfortunately in all cases, huge amounts of reality are 
filtered out, so, as George Box puts it, “Essentially, all 
models are wrong, but some are useful.” The present 
theorem and, more generally, the approach aiming at a 
quantitative estimation of cognitive entities push this 
statement yet further. In substance, there can be useful 
and good qualities in the process of doing simple, but we 
should also note that, in terms of correspondence to 
reality, models always remain extremely lacunary, or 
incomplete. 
People sometimes state that experts know how to very 
selectively focus their attention on critical domain 
dimensions, thus knowing how to ignore all other 
aspects and making the situation confusing for 
beginners.  
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A common mistake is to think that: 
• A model could have some qualities of truth, a 

capability to represent reality at the same time in 
compact and exhaustive ways 

• It could simply retain the reality it represents without 
any loss of the quintessence. 

When a quantitative estimation is attempted, force is to 
notice that all simultaneous compact and exhaustive 
representations are  impossible. 
No matter how constrained and restricted a domain of 
reality is delineated, an infinite amount of information 
remains necessary to exhaustively describe this domain. 
In practice, we can only perceive very limited aspects. 
This is for example true for RoboCup Homes. In figure 2, 
neither the displayed picture nor the map is close to 
exhaustively describing the home of RoboCup Congress 
2007 in Atlanta. 
Let’s take another example, the famous painting of 
Magritte “Ceci n’est pas une pipe (This is not a pipe).” 
Even though the representation looks accurate, it is 
nevertheless just a painting and there is no way to fill it 
with tobacco and smoke. Similarly, even if the question 
is to describe a certain cubic millimeter of the fire region 
of the corresponding real pipe, the necessary quantity of 
information for this goal explodes ; for example : 
• What are the properties of those wooden fibers? 
• Are there preserving agents in the material? 
• Where does the wood come from? 
• Does insurance cover it? 
• Were the workers who produced the pipe treated 

ethically? 
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In practice, to answer those questions and others, 
models are used. Depending on the current goal, it is 
one very particular aspect of reality that is retained or 
another as exclusively as possible. So the pipe will be 
described by: 
• An order number for the accounting department 
• Visibility information and possibly a normalized color 

code for pictorial rendering 
• Information about possibly bad taste for the 

pipe smoker 
Briefly expressed, the principle could read “The better 
model, the more false”! 

Fig. 3. Good and false. Models 
are false. For example, France 
is often called after its shape, 
hexagon (top). But they can be 
good for a goal. As a red jack 
attracts metal bowls in 
petanque game (down), a goal 
is a prerequisite for elaborating 
good models.  

 

 

Jim Harrison for example, gives an artistic view of the 
same problem, referring to his memoirs in 2010: 

The truth? I could write every day the same chapter 
of my life, I would tell every time something different. 
Never ask a writer to tell you the truth when it is 
working to his memoirs, the writer must be sincere 
and not transparent. (R6) 

For practical interest, we should insist once more on the 
necessity to be always very clear with respect to 
circumstances: target domain, adopted model, and 
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selected goal. Jesuits have long been used to modestly 
limit themselves to hic et nunc (here and now). Recent 
management methods in software engineering (extreme 
programming) similarly require that specifications be met 
as strictly as possible, that is, without any bonus in terms 
of extra search for universal solutions, which are, by 
principle, considered as impossible to reach. For 
example, if it is a question of the person’s weight, we 
might consider different domains and perform 
clarification. Is this while wearing clothes? In the morning 
at wake-up time? On Earth or Mars? Consider another 
example, the message delivering a phone number. Does 
it directly state the number (for example, +12 345 6789), 
or does it give the number indirectly (for example, 
“John’s phone number”)? In quantitative cognitics, it 
appears that some of these various domains may very 
strongly differ from other ones. 

2.3 Memory 

Definition: 
A memory is a support, the essential property of which is 
the preservation of information through time. 

Discussion: 
Memory deserves a particular comment. As a physical 
support for long term, for example, standing stones, 
memory does not present a big interest from a cognitive 
point of view. Simply, what we expect in this regard is 
just a long-lasting stability of the physical support. By 
definition, what is expected is to be able to later get back 
exactly what has been written in a first phase. In this 
sense, predictability is total. The amount of generated 
information is nil. 
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From another point of view, observing a microelectronic 
memory device shows the important role of addressing 
circuits, as well as of the circuits responsible for writing 
and reading. Generally, in as much as the notion of 
memory would include those processes (addressing, 
writing, and reading), one or several rather complex CS 
would then be implied. For example, it would no longer 
be a question of a standing stone alone, but the human 
being who had shaped it up. For a library, it would be 
question not only of a collection of books on shelves, but 
also of the librarian capable to first adequately go and 
file information and then later demand to search and find 
it back. 
In MCS theory, the property of (unlimited) permanence is 
essential for memory. This property, however, does not 
seem to deserve much developments here. Besides, we 
can actually consider the processes of addressing, 
writing, and reading separately, just as any other 
cognitive process. 
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3. Main Development Stages of MCS Theory  

In order to make the MCS theory more easily 
understood, it is useful to retrace, first in a somewhat 
informal way, the chronological development of MCS 
theory. We will present three main stages, relating 
respectively to knowledge, expertise, and other 
developments. 

3.1 Toward  the Concept of Knowledge 
Initially, the goal was to address intelligence and AI, 
which were attractive concepts, yet they lacked scientific 
and technical foundations in terms of definition and 
metrics. It was obvious from the beginning that 
information was closest to this domain. That was well 
established, scientifically and technically. Between 
information and intelligence, it progressively turned out 
that knowledge and expertise were the most appropriate 
intermediate notions to clarify. Furthermore, knowledge 
appeared as the first notion to be established on the 
basis of information. 
In common English, we use the word “knowledge” in a 
relatively nonspecific way, conveying multiple notions 
without any difference, including information, expertise, 
or skills. Now it is worth attributing specific names for 
these respective notions, which the MCS theory 
contributes to achieve. In the classical tradition, the state 
of the art is fuzzy, and such differences may look slight 
in this context, but, in fact, they are generally important, 
and we will show subsequently that different, specific 
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units are required in order to allow clear and quantitative 
estimations. 
If the concept of knowledge would indeed only 
correspond to the one of information, it would not need 
be further considered here and in MCS. At the least, it is 
already interesting to note the close vicinity of 
knowledge to information, that is, to the notion on which 
the intention was to ground it. 
What is the meaning of knowledge? Of knowing? The 
triggering brain wave could show that information was 
again the right road, not as an ontological answer (in 
which information is not knowledge in the MCS theory) 
this time, but as a way to figure out what this different 
concept denotes. An observer may judge a possible 
knowledge in a system on the basis of the information he 
or she gets from it. In particular, this is how teachers 
traditionally assess students in schools. The main idea 
here is that a system featuring knowledge (a CS) has the 
ability to generate, upon request, a certain piece of 
information.  
Intuitively speaking, these notions conveniently allow for 
a distinction between different phenomena: a musician 
performing in playback mode (pre-stored information) 
and a musician performing live (knowledge, that is, the 
ability to generate information upon request). This latter, 
cognitive behavior is even more apparent in the case of 
improvisation or jazz. In order to highlight how the 
concept of information allows for defining the one of 
knowledge, let’s consider what knowledge is useful for, 
that is, providing relevant information when it is wished. 
For example, when you know a city, you can describe 
that city, determine if pictures show that city, or give 
accurate instructions to a taxi driver. In all cases, 
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knowledge allows you to generate pertinent information 
upon request. In short, knowledge allows you to do 
things right. 

3.2 Toward the Concept of Expertise 
The previous stage, including not only a rigorous, well-
structured definition of the notion of knowledge but also 
associated metrics (developed subsequently), could 
bring other new and interesting results. And other 
elements have, in turn, caused a surprise! 
Notably, a large difference had sometimes appeared 
between the quantities of knowledge estimated by the 
theory and one’s intuition. A certain task seemed to 
require an enormous quantity as computed from MCS 
equations, but that task seemed easily performed.4 
In those cases, it appeared particularly relevant for us to 
also integrate the quantity of time necessary for the CS 
to elaborate on the delivered information or, similarly, 
fluency, the inverse of this property. This resulting new 
entity synthetically describes the ability of CS to do 
things both right and fast, that is, the concept of 
expertise (know-how, competence, and so forth). This 
property is surely the most important for a CS, and its 
merits do not limit themselves to the surprising cases 
evoked previously. 
It may seem astonishing that time has any connection 
with cognition, yet it plays a very significant role here. 
And yet, watching chess tournaments or taking school 
exams makes it obvious that the duration of time plays a 
critical role in cognition as well. 

                              
4 Being a teacher, I sometimes ironically call this paradox the 
“paradox of professors.” 
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3.3 Other Developments   
The definition of the notions of knowledge (with its 
associated unit, the lin) and expertise are no doubt the 
most revolutionary elements of MCS theory. And with 
this momentum furthermore inheriting the classical 
notions of information and model, many entities of the 
cognitive world can be defined easily and clearly: 
abstraction, concretization, experience, learning, 
intelligence, simplicity, and more. A real ontology for 
cognitive sciences can take place. In some publications, 
which are not related here for reasons of thematic 
boundary, extensions have been made, reaching into 
various domains (economy, automation, and ethics), no 
doubt with useful contributions to more clarity. 
The notion that deserves a special remark here is the 
one of complexity. In classical references, Chaitin-
Kolmogorov (CK) theory looks the closest to MCS in this 
regard for defining complexity. But there is an important 
difference in the way complexity is defined in each 
context: 
• In CK theory, the length of a minimal program is the 

essential property of the complexity of the chain it 
generates, and we cannot define these entities. 

• In present MCS theory, we can easily estimate the 
complexity of a program and, in a similar and 
independent way, so can the complexity of a chain. 
Furthermore, MCS defines and quantifies the 
reductibility of a chain as the ratio of its own 
complexity over the complexity of the program that 
could generate it. Moreover, we define complexity 
here in a direct and natural extension of the concept 
of information, to the point of inheriting the same 
measuring unit.  
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It may look very restrictive to only consider chains of 
characters and programs. However, for CK and even 
more so for MCS theories, chain and program are just 
two examples of a universal way to represent 
information and knowledge. So generalization is 
possible, and we can similarly expect benefits drawn 
from considering chains and programs with all kinds of 
other representations and contexts.  
After this survey of the main development stages of 
MCS theory, it is now time to concretely address the 
main features of the proposed model. 

4. Core Features of Defined Model  

The MCS model has three core attributes. It is 
behavioral, scale invariant, and, conceptually, 
independent from the physical nature of implementation 
support. 

 
Fig. 4 – Behavioral model. A CS is mainly 
characterized, in MCS theory, by incoming 
information, (Iin), and, respectively, outgoing 
information, (Iout). In essence, a CS has the capability 
of generating the relevant information, (Iout). Time is 
sometimes also a significant dimension. 
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4.1 Behavioral Model  
In MCS theory, the reference model is behavioral. 
Cognitive entities are essentially defined here on the 
basis of incoming message flows (Iin) and, respectively, 
outgoing ones (Iout). The CS itself is not explicitly 
specified in terms of internal structures. It can just be 
considered as a “black” box (figure 4). The set of 
possible input messages, with their corresponding output 
messages, constitutes a cognitive domain (D). 
The essential property of a CS is the ability to generate 
pertinent output information (Iout), that is, information 
corresponding to a considered domain (D). In principle, it 
may happen that the quantity of input information of a 
CS be nil, even for useful applications. On the contrary, 
a CS that would not deliver any outcoming information 
would have no practical interest. 

4.2 Applicability of MCS Model at All Levels of Detail 
(Granularity) 
The CS typically proposed in MCS theory is recursive. In 
particular, it is possible to refine analysis and address 
structures internal to the black box introduced previously 
(substructures). And reciprocally, it is possible to zoom 
out in order to possibly handle, always in behavioral 
way, at a holistic level (from a global input-output point of 
view) much larger systems, such as groups consisting in 
sets of single cognitive agents. 
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Fig. 5 – Free granularity. The schematical agent 
illustrated in the previous figure (figure 4) can be 
considered at various scales, for example, at more 
detailed levels, expliciting internal structures (left), or 
at more global levels, as for a group that integrates 
several individual agents. The latter communicates 
and shares a common culture (right). 

4.3 Independence of MCS Models from Physical 
Nature of Implementation Media 
The scope of applicability of MCS reference models is, in 
principle, not restricted to a specific nature of 
implementation support, such as to: 
• Chemicophysical implementation for the case of 

humans 
• Microelectronics for digital circuits and computers 

By the way, the classical concept of information totally 
shares this same property of independence from the 
physical type of implementation layer. 
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Fig. 6 – Nonphysical nature of CS.  As for the case of 
information, a CS, in MCS theory, is defined 
independently from the nature of physical support 
required for implementation. 

4.4 Examples of CS  
Figure 7 displays several representative cases of CS. 
We can see systems at very different scales: 
microscopic and then macroscopic for the case of man 
and implementations of different natures, 
chemicophysical and microelectronic. 

 
Fig. 7 – Examples of CS.  Schematic representation of 
a neuron (upper left), of a combinational logic circuit 
(upper right), a person answering a multiple-choice quiz 
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(lower left), a computer running a production rule (lower 
right). All cases can be modelized in a similar way. We 
can estimate their cognitive properties: complexity, 
quantities of knowledge and expertise, index of 
abstraction, and so forth. 

Today, we often communicate knowledge in the form of 
information, for example, as description of methods, list 
of instructions, or executable code. But knowledge 
effectively appears only when it is implemented on a 
cognitive agent, such as a human or as a computer, and 
indeed put into operation. In this regard, to be complete, 
the fourth example previously, which displays a 
computer instruction and a rule of production, should 
also refer to the computer and all resources necessary 
for realization of the CS. 

4.5 Goal of MCS Theory 
Finally, as shown previously,5 a model can have some 
quality (can be somehow considered as good) only for a 
given goal. So it is appropriate to clearly state what is 
the goal addressed with the help of current MCS theory. 
The goal is to precisely define key cognitive entities and 
to be able to assess them quantitatively. This should no 
doubt be useful for the context of classical cognitive 
sciences and all intellectual properties and processes 
(for example, knowledge, expertise, or learning). 
Furthermore, this approach becomes absolutely 

                              
5 See “Notion of a Model.” 
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necessary in the course of automating cognitive 
processes, therefore, for cognitics.6  

                              
6 A first stage being now passed through, it appears that, 
beyond cognition itself, the study of pertinent goal(s) for 
cognition cannot be evaded. Logically, the next ground to 
explore is the one of ethics. Similarly, implementing the results 
of cognition requires other dimensions: energy, structures and 
mechanical elements, emotions, and so forth. 
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5. Essential Cognitive Concepts in MCS 
Theory  

Because we understand the classical notions of model 
and information well, we are well equipped to approach 
the theory presented here for cognition domain, MCS. 
Time is also one of the basic dimensions relevant here. 
We will consider it later. 

 

Fig. 8. Main cognitive entities in MCS theory. Important 
cognitive concepts, defined in MCS theory, are colored 
in green (left).  They are based on a few classic entities, 
including time. Information, model and memory, though 
classic, need a discussion from a cognitive perspective, 

which follows. 
It is naturally also necessary to accept right away that all 
cognitive concepts based on the notions of model and 
information inherit their apparently limiting features: 
nonstationnarity and perishable character, subjectivity, 
and incompleteness with respect to reality. 
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In the first section, we define the term “cognitics.” Then 
we successively introduce about twenty essential 
concepts. For all of them, the title is followed by a 
number that indicates the logic order by which definitions 
best interlock. For example a notion with number 4x 
requires understanding of some notions of level 3 and 
below. Figure 8 gives an overview of developed 
concepts. 

5.1 Cognition and Cognitics (0) 
This section reports on cognition and cognitics, 
automated cognition. Automation requires clear 
definitions and, beyond usual dictionaries, lexicons or 
glossaries, a proper metric system that is presented 
soon.  
Mankind has invented an ever-increasing variety of tools 
and methods, thereby getting populations to grow in 
number, individuals to live longer, and an ever-larger 
part of our universe to be explored. Schematically, two 
kinds of progress have been made quite independently 
from each other, relating to: 
• The intangible world of ideas 
• The world of physical objects 

Only the human beings seemed to have the ability to 
establish a link between these two worlds, in particular 
with speech, writing, and drawing and possibly sculpture 
and architecture. 
During the twentieth century, the formal expression of a 
first connecting channel between physical world and 
intangible world (information) has accompanied the 
revolution of long-distance communications. It was 
essential to establish a well-defined correspondence 
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between ideas to communicate and physical objects 
supporting messages, and this has been done. 
Today, a new stage opens in front of us, where man-
made systems can not only commute, often with much 
ease, between the physical world and the world of ideas. 
Moreover, it is even possible for such systems to 
process ideas on their own, draw conclusions, induce 
precedents, abstract, or, in contrast, concretize. Here is 
the field of cognitics (automated management of 
cognitive activities), which, traditionally speaking, were 
typically or even exclusively reserved for the human 
beings. 
Definitions : 
Cognition is essentially the faculty, ensured by specific 
internal structures and operation flows, to process 
information with high performance levels, for example, in 
terms of complexity, abstraction, learning, or expertise. 
Cognitics is the field of sciences and techniques relating 
to automated cognition, that is, of cognition implemented 
on machines. 
Discussion 
Classically, we consider cognition as the main faculty of 
human brain, ensured by specific structures of the mind 
and mental operation flows, which is essentially capable 
of high performances in terms of information processing. 
It also applies to animals, computers, or machines, that 
is, in general, systems capable of similar capabilities. 
Cognitics bring an appropriate response to the challenge 
set by complexity, which does not stop growing.7 In 

                              
7 Obviously, more and more information accumulates, and 
scientific exploration by humans keeps progressing. Under this 
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cognitics, powerful operators notably include those that 
allow a fast access to information, such as sorting lists 
by alphabetical, numerical, or chronological order. A very 
powerful paradigm for automatic learning is cache 
memories. In this latter case, a second access to the 
same data in cache can be faster than the initial one in 
main memory. This translates, according to MCS 
developed subsequently, into an increase of expertise 
(the ability to learn). Another example is the 
management of bookmarks and preferred Internet links. 
The availability, thanks to MCS theory, of formal 
definitions and metrics for cognitive properties, such as 
complexity, knowledge, abstraction, or intelligence 
makes advances in cognitics easier. To clearly state the 
care taken in cognitics for the possibility to metrically 
assess cognitive entities, the expression “quantitative 
cognitics” is also sometimes used. 
In the context of cognitics, it appears that systems that 
rate high in terms of expertise are also, in principle, the 
most valuable. Intelligent systems (systems capable of 
learning) are comparatively less interesting because, by 
definition, they start operating with lower expertise 
levels.  
Cognition includes intelligence aspects, and the field of 
cognitics overlaps widely with artificial intelligence (AI) in 
the sense, we usually understood the latter. Cognitics, 
however, is more general, hosting many other concepts, 
notably those of knowledge, expertise, learning, 
abstraction, or concretization, for example. 

                                                                                           
angle then, our representations get richer. And yet reality 
unveils itself only in infinitesimal ratio.  
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5.2 Model (1a) and Domain (1b)  
Definitions : 
As introduced earlier, a model is a simplified (incomplete 
by essence) representation of reality, that is found useful 
in order to reach some specific goal. In MCS theory, the 
basic reference model is behavioral. A domain of reality 
(D), is in principle represented as  Dm , a set of  
associations, of behavioral type, Ai  ,  including pairs of 
corresponding messages, « input messages – output 
messages»: 
  Equation 3 

  Equation 4 
Such a cognitive domain can be viewed as a kind of 
(virtual) table, which contains as many rows as possible 
incoming message types. For quantitative assessment, 
each row is characterized by the instant probability of 
occurrence for the corresponding input message and 
contains the corresponding output message as well. 
Discussion 
The goal of the MCS model is to allow the quantitative 
assessment of key cognitive properties, such as 
knowledge, expertise, or learning. We introduce the 
notion of domain to express the fact that, at a given 
moment, attention is, in principle, not addressing the 
whole reality and all virtual worlds, but only focuses on a 
very limited element, a certain domain. So there is 
always a first constraint that we need to keep in mind : 
Which domain are we talking about here and now? In 
practice, difficulties often arise from the peculiarities of 
the aspects of reality being addressed, which are 
ambiguous or insufficiently defined. 
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N
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Ai : Iin ,Iout( )i
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Dm : Iin ,Iout( )1, Iin ,Iout( )2,..., Iin ,Iout( )n{ }
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A second limit stems from the fact that a model, by 
nature and as already discussed, keeps few aspects of 
the domain it addresses. In principle then, for the same 
D domain of reality, we can consider multiples models 
(Dmi).8 So it is also critical to adopt the one appropriate 
for each context. 
Example  
Consider, for example, the task to ensure that a coin be 
laid on the tail side. Two associations can represent this 
domain:  
• 1 - the case of a coin initially laid on its tail side 
• 2 - the case of a coin initially laid on its head side 

In the first case, we don’t need to do anything. In the 
second one, we need to reverse the coin. A possible 
representation for this cognitive domain is, for example, 
the following: 

  
  Equation 5 
Theorem 5 – We Cannot Directly Apprehend Reality 
Proof:  
A domain of reality (D) is not directly manageable in 
MCS theory. A certain representation (Dm) is necessary, 
as defined by equation 4.  

                              
8 A drastic alternative to using a model consists, as Parmenides 
proposed, to let observers directly facing domain (D) itself, 
“What is, is; what is not, isn’t.” For humans, experience (what 
has been lived through) seems hard to be circumvented as a 
precondition for all modeling. Yet it would be worth the trouble 
to attempt precisely that—or at least to keep this stage 
minimal—in particular as a preparation toward total automation. 

€ 

Dm : tail,nothing− to − do( ) , heads,reverse − the − coin( ){ }
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Discussion 
Restrictions already defined by theorems 1 to 4, relative 
to the classical notions of information and model, are 
inherited here. In coherence with the constraint of 
continuity, which requires basing the new theory, in 
particular, on the firm foundation that the theory of 
information provides, we must recognize that our models 
trap us. Nevertheless, the latter have at least two merits: 
M1 (a certain finitude) and especially M2 (a certain 
ability to help the agent cognitive to reach his/her/its 
goals). In the previous example, we retain a single bit of 
information for the coin under consideration, its heads or 
tail state.  

a      b  
Fig. 9. Quantitative assessment shows that the complexity of 
the world is infinite, no matter how restricted the domain, and 
immediate cognition is consequently impossible (a). 
Nevertheless, when attention is focused on a specific purpose, 
it very often appears that crude, tractable, world representations 
(models) may be sufficient (b) and cognition may successfully 
proceed in this context. 
In plain reality, this coin has an infinity of additional 
features, which will possibly turn out critical in some 
situations: nature of material it is made of, thickness, 
type of currency, surface defects, identity of owner, and 
so forth. 
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5.3 Information (2a)   
We have presented the concept of information before as 
well as illustrating it in figure 1. Let’s briefly discuss what 
the main elements relative to information are: 
• Messages convey information 
• A CS builds up or updates an internal, simplified 

representation (model) of reality 
• Messages are expected with a certain probability 

Definition 
Information allows a CS to update his/her/its model, and 
the quantity of received information is a function of the 
probability of received messages. 
Discussion 
In the definition, we have considered the case of a 
system that receives information, but it may happen that 
a system transmits some information. In fact, we handle 
the situation similarly. If a certain probability 
characterizes the transmission of a message, the same 
equation 1 gives the corresponding quantity of 
information. 
In MCS theory, we give special attention to the 
information entering a CS, as well as to the information 
going out of the system (generated by it). Equation 1 
was giving the quantity of information conveyed by a 
message (  )(essentials). In general, several messages 
are possible. And for each of them, equation 1 is, of 
course, applicable, particularly giving information 
quantity ( ) for the iith message. It is worth adding here 
that, in practice, the average quantity of information 
conveyed in a message ( ) often becomes interesting 
as a global indicator: 

€ 

Q

€ 

Qi

€ 

Qm



- 43 - 

    bit Equation 6 

Thus, the latter equation will apply in order to estimate 
information quantities entering (nin bit) and, respectively, 
stemming out from a CS (nout bit).  

5.4 Message (2b)   
Definition 
A message is a piece of information. Essentially, its 
probability of occurrence determines the quantity of 
information it conveys. 
Discussion 
As already debated, the significant probability of 
occurrence is the one the receiver of the message 
estimates, and this is all retained of messages in order 
to estimate the quantity of conveyed information. 
Today, many people have some experience of computer 
systems, and they are often much influenced by the 
digital representations they meet. It is true that the way a 
message has been digitally encoded can a posteriori 
turn out to be a meaningful indicator of the quantity of 
information it contains. Nevertheless, equation 1 is still 
critical. In case of conflict, two situations can 
schematically occur: 
• Either the used code seems to consist in more bits 

than necessary and thus contains, by definition, 
redundancy. This may be useful, for example, in 
case of communication in presence of disturbances 

• On the contrary, the code may seem to consist in 
less bits of information than necessary for such a 
message, but one should be aware that this is not 
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possible in theory. We must surely do analysis 
again carefully in order to locate the errors. 

In principle, simple and effective methods are available 
in order to minimally encode messages (implement them 
with just the amount of bit specified by equation 1, 
especially Huffman code). Equation 1 also sets the 
ultimate lower limit for all attempts to compress 
information without errors. 
Notice that, by etymology, the word “message” refers to 
an emitter. This was appropriate for the early days of 
information theory when communication issues 
prevailed. In current context, cognitive sciences, the 
focus is moving more to the receiver side. From the 
latter perspective, we generally perceive information as 
news, sensations, and discoveries. A symmetric general 
word for an incoming item of information could be 
“receptage.” 

5.5 Complexity (3a)   
Definition 
Complexity is the property to require a lot of information 
for an exhaustive description. Quantitatively, complexity 
is the amount of required information for this description. 
The measurement unit is therefore the same as for 
information (the bit)9. 

                              
9 Other authors have proposed definitions for complexity. The 
definition closest to the present one, in MCS theory, is probably 
the one of Chaitin-Kolmogorov. This point is further discussed 
subsequently in Reductibility 
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Discussion 
Very directly, this definition carries over the properties of 
information itself to complexity: nonstationarity and 
subjectivity (theorems 1 and 2). 
An additional useful equation for quantifying information 
is the one that computes the average information 
quantity of messages for cases of equiprobability. This 
allows for a fast estimation of information quantities and 
gives an upper boundary in all cases. Here is the 
equation, in the case of N possible different messages, 
all being equiprobable: 

   bit Equation 7 

The surest mean to limit complexity consists in 
restricting oneself in as much as possible to small 
contexts (a minimal number of different messages). 
Classical methods for implementing this ideal strategy 
include hierarchical10 representations and sorting 
mechanisms. Efforts are then carried from the direct 
management of a complex context over to the 
optimization of addressing and navigation techniques 
from one context to another. 
It is obvious today that content-based addressing and 
hyperlinks, methods that current information and network 
                              
10 In a report, for example, we have in particular: a title as a very 
abstract way to transfer without excessive information content 
of the report in the broader context of a library or a bibliography; 
in the context of the summary, a presentation of the entire 
report in an abstract form; or, within the report, particular 
contexts allow to specifically describe respective details. 
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technologies support, allow humans to validly consider a 
very large number of different contexts and keep each of 
them at a manageable level of complexity. Globally, the 
complexity of our worlds on computer is nowadays 
counted in terabytes11 at the scale of an individual 
workstation and probably 1010 more at the scale of the 
Internet. 
In particular, it appears that the present definition of 
complexity solves a classical paradox in AI, the paradox 
of experts. The more one knows, the easier one can 
learn some more.12 Experts can largely anticipate 
messages. By definition, the latter convey less 
information for the experts. They are then, also by 
definition, less complex. What follows is no longer a 
paradox. It is logical that one can more easily learn what 
is less complex.  
Example 
The definition of complexity in MCS theory is held in 
about two lines. This corresponds to roughly twenty 
words, that is, about 200 bit.13 Consequently, the 
quantity of complexity of this definition is 200 bit. 

                              
11 One byte equals eight bit. 
12 This is contrary of the phenomena that are usual in the 
physical world. For example, there is increasing the pressure in 
a tire. The more one pumps, the more it becomes difficult to 
pump further. 
13 Assuming one thousand common words in English, all with 
equal probability, the probability of a word is 1/1000. With 
Shannon’s equation for the quantitative estimation of 
information (equation 2), this yields about 10 bit of information 
per word. 
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5.6 Abstraction (3b)   
Definition 
Abstraction is the property of a system that generates, 
as output messages, less information than it receives. 
Quantitatively, in MCS theory, the abstraction index (iAbs) 
is defined as the ratio of incoming information quantity 
(nin bit) over outgoing information quantity (nout bit) : 

  (without unit) (Equation 8) 

Discussion 
While we measure input and output quantities of 
information in bit, the abstraction index itself is without 
unit. Typically, the abstraction index is larger than or 
equal to one. If on the contrary, the quantity of 
information is larger on the output side than on input 
side, there is no real abstraction, but rather some 
concretization. 
Abstraction is typical for perceptive processes and 
pattern recognition and, in general, characterizes 
understanding and scientific research. Obviously, this 
also qualifies modeling. 

5.7 Concretization (3c)   
Definition 
Concretization is the property of a system that 
generates, as output messages, less information than it 
receives. Quantitatively, in MCS theory, we define the 
abstraction index ( ) as the ratio of outgoing 
information quantity ( bit) over incoming information 
quantity ( bit): 
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  (without unit)      Equation 9 

Discussion 
While we measure input and output quantities of 
information in bit, the concretization index itself is without 
unit. Typically, the concretization index is larger than or 
equal to one. If on the contrary, the quantity of output 
information is smaller than in input, there is no real 
concretization, but rather some abstraction. 
Concretization processes are typical for synthesis, for 
realization. They are creative and evidently generate 
information. To generate information and, more 
particularly, perform concretization are synonyms for art 
(as found in particular in the words artisan and artist). 

5.8 Knowledge (4a)   
Definition 
Knowledge makes systems capable to generate the 
relevant information. The generated information is 
relevant (pertinent or correct) if it corresponds to the 
considered cognitive domain. Quantitatively, in MCS 
theory, a function of average incoming ( ) and 
outgoing information quantities ( ) assesses 
knowledge. We define the quantity of knowledge (K) as 
follows:  

     lin       Equation 10 
The logarithm is taken in basis 2; the unit is the lin 
(logarithm of information). The relevant information may 
be stored internally as such, but, in general, it is 
dynamically elaborated. Systems with knowledge are 
called CS. So knowledge is the essential property of CS. 
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CS generate information either actually proactively or in 
reaction to some incoming information. 
Discussion 
Knowledge allows CS to do right. Knowledge is the 
notion the most evidently related to CS and even 
cognition in general, as the old roots of these words 
indicate. Let’s consider in a first phase the type of 
information traditionally generated by humans in the 
past. In those days, the user in search of a piece of 
information either had to refer to another human or 
restore the past result of cognitive processes of human 
nature from some kind of memory. 
Here are two examples: the table of multiplication for 
pupils, acquired by rote learning (one times one until 
twelve times twelve) or, as a more complex example, the 
table of logarithms and trigonometric functions. 
The revolution, made possible by artificial cognitive 
systems (ACS), is that the information sought by 
humans can suddenly be elaborated on demand, without 
having been stored at all, without prior tabulation. The 
name of cognitive agent, sometimes also used to 
describe a CS, makes this point well. 
Let’s return to our two examples. The first pocket 
calculators date to the 1970s. Since then, they have 
been, for example, capable to quickly show the result of 
a computation such as thirteen times thirteen or log(5) 
without using any memory containing pre-elaborated, 
explicit answers. 
A CS largely thus spares the need of prior development 
of very large amounts of information. This comes, 
however, at a certain price. On the contrary of stored 
information, which is static and virtually immediately 
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available, cognition involves by nature processes 
(action) and therefore necessarily requires a certain 
amount of time. What is essential, as said, is:  
• The exemption from the need to prepare the 

information that might be perhaps required later 
• The emerging need to implement a process 

This interchangeability of roles between information pre-
established and processes capable of generating it on 
demand inspires in MCS theory how to assess the 
quantities of knowledge. 
The basic idea is to assess the amount of knowledge of 
a CS as a function of the amount of predetermined 
information that can be replaced. At the heart of 
equation 9, we introduce the term M for this purpose: 
  Equation 11 
The product term reflects the fact that we can 
conveniently see a knowledge domain as the set of all 
corresponding possible input-output associations. One 
can imagine a memory, a table whose width would be 

 bit wide. The number of lines corresponds to all 
possible input messages ( lines, assuming an optimal 
code). (The latter would yield a minimum size.)14 
The presence of the amount of incoming information as 
an exponent of the basis 2 should alert us. The growth of 
such a function is very fast. With 10 as an exponent, the 

                              
14 There is no essential difference between the size of the virtual 
table ( ), the complexity of the cognitive domain where a 
cognitive system operates ( ), and the quantity of information 
necessary to describe all possible associations, , , … ,,  
in this context. 
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number 2 yields about one thousand. With 30, it yields 
one billion. 
Indeed, it appears that, in general, cognitive processes 
for human perception, the amount  lies in the 
thousands range or even much more. So the size of this 
virtual table ( ) is so huge that it would be quite 
impossible to physically implement it. To lighten the 
notation somewhat, a logarithmic15 function has been 
added to the estimate16 of equation 11, essentially 
yielding equation 10. 
It must also be remembered that the goal here is to 
simply develop a standard, a conceptual reference to 
quantify the knowledge of CS and not directly to make it 
operational, using a table of predetermined answers. 
(Even if this method may be possible for very simple 
systems, it cannot be the solution in the vast majority of 
cases.) 
The presentation is restricted here to situations where 
CS make no error. We consider extensions in the next 
section for the case of errors. 
In CS, knowledge lies in the structure and organization 
of components. It emerges when multiple elements are 
interrelated and may gain momentum when many 
dynamically interact/communicate. Thus knowledge is 

                              
15 A similar scheme has been done in the domain of acoustic 
power, for example, which has led to the Bell (and dB) unit(s). 
16 In a theoretical case, somewhat nonsensical, where no 
information would be virtually stored ( = 0 bit), it would be 
reasonable that the equation gives 0 lin of knowledge as well, 
rather than - . For this reason, the +1 term is added in 
equation 9, but, in general, this quantity does not significantly 
affect the result and can be neglected. 
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tightly bound to the very essence of systems. Notice 
that, in the same manner as various kinds of physical 
signals convey information, knowledge may be 
embedded in mechanical systems (old office calculators, 
Babbage’s engine, and so forth) in electrical, physio-
chemical ones, or structures of another nature yet. 
Example 
In the case of coin tossing mentioned earlier ( ), we 
had two equally probable incoming messages, heads or 
tail, and therefore one bit of information. 

 
  Equation 12 
For the corresponding messages in output, nothing-to-do 
and reverse-the-coin, we also have two equally likely 
messages and therefore 1 bit of information as well. 
Consequently, the amount of knowledge (K) of a CS 
capable of assuming this task is as follows: 

  [lin]  Equation 13 
In principle, we have said everything. Here we have 1.6 
lin of knowledge. Let’s nevertheless consider the case in 
detail in order to intuitively feel a little the analogy cited 
previously with a virtual table that would contain the 
complete set of associations. To tabulate the domain, we 
would need  rows. The first one could be the 
case for heads and the second one for tails. We have 
already seen that the corresponding actions (output 
messages nothing-to-do and reverse-the-coin) also 
convey 1 bit of information. These two messages could 
be respectively encoded as 0 and 1, and it clearly 
appears that, in this case, the table size would be the 
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following:  (bit), the value we already 
had in equation 11. 
Theorem 6 – The Quantity of Knowledge of a CS is 
Much More Related to the Quantity of Information It 
Can Perceive Than to the Quantity of Information It 
Can Generate.   
Proof  
Consider the core element of equation 10, which allows 
the estimation of knowledge (K). This is also the term M 
of equation 11. The average amount of generated 
information (nout) appears as a factor, whereas the 
amount of perceived, incoming information (nin) 
participates as an exponent. 
With equal values, nin = nout = n, nout typically brings a 
contribution to K that is negligible with respect to nin. If n 
is nil, the situation is less obvious as the constant term 
equal to 1 then dominates. But a CS that does not 
deliver output information does not make much sense. 
And for all values of n equal to or larger than 1, or 
even .  
Discussion  
The basic equation for measuring information, equation 
1, includes a logarithm for mapping probabilities into 
amounts of information.17 So the inverse function (the 
function to map information quantities into probabilities) 
includes an exponential. This mainly affects the 
contribution of nin. In a different way, the same 
logarithmic function implies that, if one considers several 
generated messages simultaneously, their 
                              
17 Equation 6 makes even more evident the logarithmic law that 
binds quantity of information and number of possible messages. 
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corresponding amounts of information simply add up. 
This affects mainly the contribution of nout. 
The analogy of the virtual table, as developed in the 
previous example, allows us to see the asymmetry of 
effects of input and output quantities. Here are two 
additional examples, of more intuitive nature: 
An ordinary CD player quite simply maps the ordinal 
number of songs ( bit) into generated musical 
sounds (ten minutes of music or about 10 * 60 * 
44,000 * 20 = 528Mbit), whereas a system capable of 
recognizing such pieces of music ( 528 Mbps; 

 bit) is hardly conceivable.18 
It is much easier today to make a speech synthesizer 
(transformation in the direction from text to speech) than 
voice recognition (transformation in the direction from 
voice to text). And it turns out that the amount of 
information corresponding to a message in voice form is 
much greater than the same message in usual text form.  
Theorem 7 – We Cannot Make Common CS as 
Simple Readers of Pre-Computed Answers  
Proof  
It is commonplace today to add three numbers in 
quadruple precision, both by computer or directly by 
manual operation. Now this means we know how to add 
three numbers, consisting of thirty-four digits each. A 
table containing all the possibilities of this task should 
contain 103*34 rows, each containing a number of thirty-

                              
18 Notice this is very different from the type of recognition of 
songs that starts to happen on the Internet, in karaoke style. A 
quick quantitative evaluation proves it. Even for much simplified 
domains, symmetry remains far away. 
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five digits. But such a number of rows is more than a 
billion of billion times the number of particles (electrons, 
protons, and neutrons) in the known universe (1080). 
This means it is totally excluded today to remember a 
priori all the possible answers in this domain. 
Discussion  
In previous example, the quantity of knowledge (K) 
amounts to about 350 lin. Yet this is a rather small 
amount of knowledge in the world of CS. For example, it 
is common today that automated systems attempt to 
recognize spoken words, or images. 
A second of speech in CD quality amounts to about 
44,000 × 8 bit of information. It would be necessary here 
to rely on a table with 10100,000 rows to tabulate all 
possible one-second-long sounds. The corresponding 
quantity of knowledge equals approximately 350,000 lin. 
Imagine, as was reported in news media, that we 
consider an automated, visual control for identifying 
humans at the border. An image of television quality 
traditionally consists in about 600 rows and the 
equivalent of about 800 columns. Even if we neglect the 
color and retain only the saturated black and white levels 
for each picture element, this already amounts to about 
500,000 bits of information. A table with 10145,000 rows 
would be required to a priori store the appropriate 
response to each possible image. In such contexts and if 
the issue is to quantify the amount of knowledge, output 
information quantities can generally be neglected 
(theorem 6). If a single bit of information is stored by row 
(for example, accepted or rejected) and then possibly 
outputted, the amount of knowledge (K) is 500,000 lin. If, 
as the opposite extreme case, an amount of information 
similar to a whole dictionary is stored on each row (1 Mb 
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per line). This could, for example, be a very detailed 
curriculum of the person recognized or possibly, in the 
other example, a copy of the picture with many 
comments. K’ would reach a mere 20 additional lin, K’ = 
500,020 lin. 
In the world of cognition, numbers can definitely be very 
large. These two examples seem banal and yet mobilize 
the gogol with exponent 1,000 and more. 
Theorem 8 – The Amount of Knowledge of a Truly 
Random Generator Is Infinite 
Proof  
At a minimum, a generator of truly random information 
has no entry; nin = 0 bit. On the contrary, output 
information is virtually unlimited. Consider elementary 
output messages, comprising a single bit, for example, 0 
or 1. In practice, it is not sufficient to get a single 
response. Such a generator, truly random, is expected to 
provide numerous output messages, numerous 
successive 0 and 1, without any regularity at infinity. 
Therefore,  bit. 
The amount of knowledge of such a CS is as follows: 

    lin 
  
  Equation 14 
Discussion  
This is a surprise. The traditional intuition is that only a small 
amount of knowledge is necessary to generate random 
information. But equation 14 shows that a very large amount 
is required. This result is correct and can be understood as 
follows : the virtual memory containing the information of the 
domain must be at least as large as the one of all output 
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messages. If the expected sequence, apparently random, 
that is unpredictable by the user, is globally not of limited 
length, the memory must also be infinite in size. 
In practice, it is common in electronics and computers that 
number generators are provided, not only somehow random, 
but mostly pseudo-random. Typically, the sequences 
generated are cyclical. The corresponding amount of 
knowledge is of the order of tens of lin. This is obviously very 
far from a truly random generator, and it is not on this basis 
that the law authorizes lottery games and raffles. 
A common alternative approach for a CS is to transfer as 
output some information acquired from an external 
source that itself is considered as random, for example, 
the instantaneous hundredth of a second, according to 
the dashboard clock. For example, if we want a 
computer to say randomly and with equal probability 
“hello” or “good morning” when it is turned on, we could 
ask it to read the current time at power on. (This time, it 
could be 9h 10min 12s and 20/100, for example.) So the 
hundredth is even. (Here, with 20, it is the case.) Then 
we should hear “hello.” In principle, the method works 
and is even probably satisfactory for this simple 
application. But without doubt, the precise analysis of 
individual cases is difficult, and this does not constitute 
in itself a guarantee of quality for the randomness of the 
result. The problem fully remains at the level of the 
external source. (Here, the process that turns the 
computer on, and especially its time specifics.) 

5.9 Experience(4b)   
Definition 
Experience (R) is the property of a CS that has been 
exposed to a cognitive domain. Quantitatively, we 
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traditionally evaluate the experiment in terms of duration 
(T), that is, in terms of time. The unit is then the second 
(s). 
 Rt = T                 (s) Equation 15 
Another view, more fundamental in MCS theory, is to 
measure experience (R) based on the amount of 
information conveyed in input-output message 
associations (Ai), to which the CS has been exposed: 

      bit Equation 16 

nini and nouti correspond to the quantities of information of 
the input message and the message of the ith output of 
the ith association. 
Discussion 
Although we have traditionally measured experience 
with time units, the nature of the environment is clearly 
not without significance. The two definitions converge if 
one describes a given environment by the average flow 
of relevant associations that can be met there. 
Example 
A CS was able to attend the tossing of hundreds of 
coins, followed by a possible reversing on the tail side, 
that is, a hundred executions of the task described 
previously, each yielding one Ai association that belongs 
to the same cognitive domain ((Dm). Therefore, for this 
system, we have the amount of experience as follows: 

    bit Equation 17 

We could also measure this as the experience of a day, 
adopting the traditional definition. Then it should be 
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noted that, in this context, one can observe an average 
of one hundred associations (Ai) in the domain (Dm) per 
day. 

5.10 Fluency (4c)   
Definition 
Fluency (f) is the property of a CS that delivers 
information quickly. Quantitatively, in MCS theory, 
fluency is estimated as the inverse of the time duration 
( ) needed to prepare output messages. The unit is 
then the inverse of the second:  

    (1/s) Equation 18 
Discussion 
We can see fluency as the processing speed of CS. It 
also qualifies the ability of CS to respond to information 
(input messages). 
Examples:  
A CS can give its response 0.5 seconds after receiving 
each message entry. Its fluency in this area is then 2 
(1/s). 
A random number generator, as defined previously, 
delivers its messages (1 bit each) every 0.1 seconds. Its 
fluidity is then 10. 

5.11 Simplicity (4d)   
Definition 
In MCS theory, we define simplicity as the property of an 
object to require little information to be exhaustively 
described. Quantitatively, we canestimate the amount of 
simplicity as the inverse of the information quantity 
necessary of this description. So the unit of 
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measurement for simplicity is the inverse of the one for 
information, (1/bit). 
Discussion 
Simplicity is the opposite of complexity. We can estimate 
these two quantities very directly, based on the amounts 
of associated information. Remember, however, that the 
notion of information, as conventionally defined, has 
sometimes disturbing peculiarities, as evidenced in 
theorems 1 and 2, fluctuations over time and subjectivity. 
These peculiarities are inherited here. Fluctuations over 
time and subjectivity are consequently also essential 
features of simplicity. 
Example 
The definition of simplicity in MCS theory holds in two 
and half lines, representing approximately 20 words or 
200 bit. On this basis, the simplicity of the definition 
amounts therefore to about 1/200 = 0.005 (1/bit). 
 

5.12 Expertise (5a)   
Definition 
In MCS theory, expertise is the property of a CS to 
quickly deliver relevant information. Quantitatively, we 
define the expertise (E) as the product of knowledge (K) 
and fluency (f): 
     (lin/s)     Equation 19 
The unit of measurement for expertise is the ratio of lin 
per second, (lin / s). 
 
Discussion 
Expertise enables CS to do right and fast. Expertise is a 
feature of CS that describes not simply their knowledge 
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level, but also considers their fluency. Equation 15 
states, in particular, that two CS may reach a similar 
level of expertise even if one features more knowledge 
(is more knowledgeable) than the other. For this to be 
true, the latter must operate quicker. 
Expertise is the most fascinating property of CS. In 
general language, expertise has many synonyms: know-
how, skill, competence, ability, excellence, and so forth. 
If a system is decomposed into subsystems or, vice 
versa, multiple systems are integrated to form a more 
comprehensive system, most of the corresponding 
cognitive characteristics, including expertise, cannot be 
combined directly in a standard way. The analysis of 
each case must be made in detail, showing the following 
for each subsystem: 
• Input information and corresponding outputs 
• and fluency. 

The amounts of information respectively entering and 
leaving the system, at the largest scale, certainly remain 
constant for a given cognitive domain. But depending on 
the adopted structure of (de-)composition, it may appear, 
within the overall system, a large number of variants 
and, therefore, different interfaces between subsystems. 
Of course, the respective sizes of the various cognitive 
subsystems also reflect this. 
Example 1 
Again consider the coin example seen previously, 
relating to domain ( ). If a CS can correctly decide 
whether to flip the coin or not, in the 0.5 second following 
the random toss, the amount of expertise is as follows: 
     (lin/s)     Equation 20 € 
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Example 2 
A mobile robot, such as RH3-Y in Suzhou during the 
RoboCup World Championship in July 2008, can follow 
a person without contact in an open context. That is, it 
moves in the context of a group of people, including the 
public, at a speed of about 1 meter per second with very 
gentle movements. How much does it demonstrate 
expertise in this domain? We can, of course, give the 
answer in a comprehensive manner (at a global level). 
We will do it at the point E2.4 of the example. But in fact, 
for reasons of optimization at implementation stage, it is 
worthwhile to decompose the overall CS into three 
sequentially organized subsystems: perception, 
decision, and locomotion. And in order to answer the 
previous question, the analysis will first be made for 
each of these subsystems. Finally, the point E2.5 puts 
the various intermediary results into perspective. 
E2.1 Decision: 
As input information for the decision subsystem, the 
system considers the position, relative to the robot, of 
the human it follows. Considering an accuracy on the 
order of 1 percent for the spatial coordinates of the 
human being followed is sufficient (two coordinates, for 
example, of distance and angular direction), we have 
about 15 bit of input information for this subsystem: 
     bit     Equation 21 
Based on internal considerations, including acceleration, 
deceleration, and control protocol and internal state 
variables, this subsystem finally transmits the following 
instructions to the subsequent system (locomotion): 
instantaneous target values for tangential 
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(forward/backward) and turning (right/left) speeds. An 
accuracy of 1 percent is more than enough: 
    bit     Equation 22 
The optimal fluency in this subsystem is 1/(25 ms), that 
is, 40 (1/s). Consequently, this is the amount of expertise 
of the subsystem for decision-making: 

 lin/s  
 Equation 23 
E2.2 Perception 
But how to know the position of the tracked human 
(guide)? The solution adopted for RH3-Y is based on the 
estimation by a planar laser scanning ranger of about 
700 radial distances, each acquired with a precision of 
the order of 1 percent as well: 
     bit     Equation 24 
We can consider the amount of information coming out 
of the sub-collection system as identical to that entering 
the next decision subsystem (equation 17). Therefore, 

 bit. A fluency of 1/(0.1 s), or 10 (1/s), is largely 
sufficient. The amount of expertise for perception is the 
following: 

  
                                              lin/s   Equation 25 
R2.3 Locomotion: 
Not only does the locomotion subsystem consider the 
instantaneous target values for speed, received from the 
decision subsystem, but some possible disturbances on 
the wheels as well, mostly due to local ground 
peculiarities. Considering an accuracy of about 1 percent 
on speed target values and angular coordinates of the 
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two-wheel drive, we have about 30 bit of input 
information for this subsystem: 
    bit    Equation 26 
On output side, the system commands an appropriate 
current in each of the two active wheels. An accuracy of 
1 percent is quite sufficient: 
     bit     Equation 27 
Fluency should be 1/(1 ms), or 1,000 (1/s), for motor 
control, according to dynamic constraints not discussed 
here. So the amount of expertise in the system is: 

 lin/s 
   Equation 28 
E2.4 Overall Evaluation 
To complete the example, it is also possible to assess 
the amount of expertise of the robot from a global point 
of view. Overall, input information consists in the 700 
radial distances and 2 positions of the wheels (702 
values known with a precision of the order of 1 percent): 
    bit     Equation 29 
Globally as well, the system generates as output the 
target values of electric current in the two-wheel motors. 
Consider an accuracy on the order of one percent: 
    bit     Equation 30 
Furthermore, it is necessary to manage with good 
fluency the currents in the motors, f = 1000 (1/s). So the 
amount of expertise of the system as a whole is the 
following: 

    lin/s 
   Equation 31 
E2.5 General Comment 
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The detailed example shows several interesting points 
that are very representative. The amount of expertise 
required at the global level is very high. We can see it as 
an upper limit, required a priori by the task. We need 
resources, labor, and ingenuity to find a solution. 
Structuring the overall task in order to judiciously 
allocate the three subsystems, respectively of 
perception, decision, and action, is an important 
contribution, which reduces the integral quantity of 
expertise ultimately required.  
Rather large amounts of expertise are notable for the 
tasks of perception and action. In the first case (the 
perception task), the large values for expertise reflect the 
relatively large quantity of input information to process. 
In the second case (the action subsystem), the fast 
fluency is the major factor for expertise size. The amount 
of expertise required for the task of decision is 
comparatively small. 

5.13 Reductibility (5b)   
Definition: 
Reductibility is the property of an object for which it is 
simpler to describe how to describe it rather than to 
describe it directly. In MCS theory, we quantitatively 
evaluate reductibility as the ratio of the complexity of the 
object on the complexity of its indirect description. 

  Equation 32 

Reductibility is a ratio, so it is without unit. 
Discussion 
In MCS theory, directly describing the object determines 
the object’s complexity. To describe the object indirectly 
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is different. This means that some instructions are given. 
Those instructions are necessary to elaborate the direct 
description of the object elsewhere. To describe the 
object indirectly means to specify how to describe the 
object. 
The classic definition of Chaitin-Kolmogorov (CK) for 
complexity focuses on something called the indirect 
description here. In essence, according to CK, the 
complexity of a string19 is the length of the program to 
generate the string. 
We must understand the word “object” here in very 
general terms. Like in “object-programming,” for 
example, this word, in the definition of complexity, may 
as well denote a process or a virtual idea as a physical 
entity. 
In MCS theory, we consider it useful to be able to 
distinguish between objects intrinsically simple and 
objects that can be reduced. It is similarly useful to 
distinguish between direct and indirect description. In the 
latter case, complexity may look smaller, but we 
definitely need time and resources to finally obtain, if all 
goes well, the object description. 
We can also see reductibility as the property of a system 
that subsystems of integral complexity smaller than the 
complexity of the system itself can implement. 
Examples  
Three examples about reductibility follow. Here, a 
reductibility indicator, showing how some simpler kinds 
of descriptions may sometimes apply, complements the 
complexity of objects estimated in the MCS sense. 

                              
19 Any object can be reduced to this type of representation. 
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Example 1 
Consider the following, fifty-character-long string, 
“Zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
zzzzzzzzz.” We can also describe this character string in 
about twenty-five characters, as follows, “Repeat the 
character z 50 times.” Let’s call this indirect description a 
method or a program. In this example, the object is 
reducible. Quantitatively, the reductibility is worth about 
2: 
• The complexity of the string of characters is of 50 × 

8 = 400 bit, considering that one-byte-long ASCII 
code represents each “z.” 

• The complexity of the previous program is 
approximately 31 characters of 31 × 8 = 248 bit, 
with the same ASCII code. (Notice that, to actually 
get the target character string, we still need to find a 
well-prepared computer or a human volunteer in 
order to read the program and do the job of writing 
zs.) 

-  
  Equation 33 
Example 2 
Consider the number p in three different descriptions. 
E2.1 Explicit Description 
The number p requires an infinite number of characters 
to be described directly, explicitly. This is not possible in 
practice. Complexity =  bit. 
E2.2 Indirect Descriptions 
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The number p has a reductible complexity in the sense 
that it can be indirectly described by simple means, 
mathematical laws, or programs, for example, as follows: 
• The number p is the ratio between circumference 

and diameter for any circle 

•  
In the latter, this sequence converges to the exact value. 
The complexity of these two indirect descriptions is on 
the order of the hundreds of bit each, which leads to 
infinite reductibility of p �complexity in both cases. 
E2.3 Conclusion 
It is also possible to approximately describe the number 
p as follows:  . The complexity of this 
description is then about 20 bit. On this basis, the 
reductibility of number p is infinite again, but, considering 
its approximate nature, the case is questionable. Can we 
expect anything in practice better than an approximation 
for an object whose complexity is infinite? 
This second example leads to two main conclusions: 
• Points E2.1 and E2.2 imply the reductibility of the 

number p is infinite ( ¥ /100 = ¥)  
• Although the conclusion gives us a fairly rough 

estimate of number p, we generally prefer this term, 
direct or immediate, rather than formulation E2.2, 
which itself is simple and precise, but needs to be 
interpreted in order to concretely and ultimately 
obtain anyway just an approximation of number p. 

Example 3 
Consider the addition of two integers with n digits. When 
n is greater than 1, the domain is reducible. 
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E3.1 
The complexity (C) of the domain corresponding to the 
addition of two integers with n digits each is as follows: 
     bit,     Equation 34 
Considering each digit conveys 3.3 bit of information, the 
(virtual) table contains  rows of solutions, and each 
line contains a result with n+1 digits.20 
E3.2 
The addition rule can be described as follows, “The 
resulting number is obtained by adding the rightmost 
digit of the first operand to the similar digit of the second 
operand, and then the process repeats in the left 
direction, digit by digit, until exhaustion. If the result for a 
position is greater than 9, 10 is subtracted and 1 (carry) 
is added to the next position.” The complexity (C) of this 
rule is about 350 characters worth (about 2,900 bit), 
assuming the average information quantity of a 
character amounts to 8 bit. 
In conclusion of this third example, one might intuitively 
feel that, for large numbers, the complexity of the 
domain is overvalued as assessed by the formula 
specified in E3.1, that is, according to the definition 
proposed in the MCS theory for complexity. 
Nevertheless, we must note that, in fact, the simple 
description by E3.2, indirect, does not give any concrete 
results. The computation work remains to be done with 
ad hoc resources and time to be identified and found, 

                              
20 In the case of addition, the resulting numbers are not 
equiprobable, strictly speaking. But it is not necessary to look 
for more accuracy here because this would not fundamentally 
change the example. 
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which becomes even practically impossible for n taking 
arbitrarily large values. The possible complexity of an 
object cannot be ignored. Its possible reductibility does 
not equal simplicity. Therefore, the definitions declared 
in MCS theory are useful. 

5.14 Learning (6)   
Definition 
Learning is the ability of a CS to raise its level of 
expertise over time (t), or more generally speaking, with 
experience (r). According to MCS theory, we can 
estimate a quantity of learning (L) as the change in 
expertise levels occurred during the learning phase. The 
unit of measure is the same as for expertise (lin per 
second or lin/s): 
     lin/s Equation 35 

       lin/s Equation 36 
Discussion 
A CS that learns can increase its level of expertise, that 
is, to get progressively more accurate (more knowledge) 
or faster (more fluency). It may also happen that a 
system unlearns in the sense that the amount of 
expertise decreases in some cases over time and 
experience. 
Examples 
A robot explores a maze at first. Subsequently, it can 
cross it and reaches out faster because it has 
memorized where the dead ends are located and does 
not travel through them any longer. The amount of 
knowledge remains the same (in the sense that, like 
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before, the robot can reach out), but the fluency 
improves. 
In Atlanta, for RoboCup 2007 in the league At-Home, the 
RH2-Y robot learned movements to be performed simply 
by observing movements performed by humans as an 
example (so-called CopyCat test). Before observation, 
there is no knowledge. After observation, in the simplest 
case shown, the amount learned is about the following: 

lin/s    
 Equation 37 

5.15 Intelligence (7)   
Definition 
Intelligence is the property of a CS capable of learning.21 
In MCS theory, we can estimate intelligence 
quantitatively as an index, as the ratio between amounts 
learned (L) and experience (R). In coherence with the 
dual definitions of experience as defined previously (one 
more conventional and intuitive as a function of time and 
the other more rigorous as a function of observed 
information), we introduce two different equations for 
measuring intelligence: 

   [ ] Equation 38 

                              
21 MCS theory aims at clarity and essentials, in general as well 
as in the particular case of this definition. It must be admitted 
that, in common parlance, the word “intelligence” is more 
ambiguous, sometimes conveying a variety of other meanings, 
such as information, knowledge, enquiry, or understanding. 
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  [ ] Equation 39 

Discussion 
In differential terms, we can thus see intelligence as the 
derivative of expertise with respect to experience. If 
possible, it seems preferable for a CS to immediately 
operate with the highest possible level of expertise 
(without having to learn). Even if, consequently, the 
intelligence index would give 0 in this case, this might 
seem paradoxical. 
The definition of intelligence, as declared here in the 
MCS theory, is believed to be the most appropriate, and 
it is equally applicable to humans and nonhuman 
systems. However, given the importance of this concept, 
we briefly present and discuss some of the major other 
definitions: 
• D1. The expression “AI” for artificial intelligence was 

coined more than fifty years ago, yet AI research 
has gone through several winters, as its results 
repeatedly failed to be sufficiently convincing for 
investors and supporters 

• D2. The most common definition for AI is the one of 
Alan Turing. A machine is proven to be intelligent if 
it can apparently chat like a human. But the critique 
of this definition is well founded. It is too much 
anthropocentric and culturally biased. What would 
be the outcome of computers reciprocally rating 
humans? Could we fool the computers? 

• D3. A factual approach can describe what happens 
in laboratories and offices labeled as being related 
to intelligence (for example, ability to play chess, 
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translate texts, emulate neural networks, and so 
forth) 

• D4. Many people, not only in the public but even 
among specialists, categorically reject the notion of 
AI, implicitly if not explicitly. For them, intelligence is 
a cognitive property unique to humans. In practice, 
for them, as long as calculators did not exist, 
arithmetic was absolutely in the domain of 
intelligence, likewise for playing chess, translations, 
machine vision, robot locomotion, and so forth. 
However, similarly, the very day machines could do 
the trick, they were actually demonstrating that this 
was not AI. The public makes this assumption 
intuitively. Some specialists state, “AI is for 
processes where there are no known solutions!” 

• D5. Some researchers have been advocating, with 
a certain level of success in selected niche fields, a 
radical paradigm by which a certain kind of 
intelligence could be approached without the 
hurdles of modeling and theoretical developments, 
simply by embedding agents in reality, “The model 
is the world” (R7). In such a scheme however, 
drastic limits restrict time (present only), space (here 
only), and many more dimensions. The past, future, 
remote, and all virtual worlds are out of reach (also 
out of cognitive reach) 

• D6. As regards to the common language, we refer 
the reader to classical dictionaries. We can observe 
that, depending on the context under focus, the 
meaning of the word “intelligence” can vary 
substantially. In particular, although the definition 
according to the MCS theory corresponds broadly to 
the general sense of the word, it is also true that 



- 74 - 

people sometimes use the word “intelligence” as a 
loose synonym for other specific concepts precisely 
defined in MCS theory, knowledge, expertise, and 
so forth. 
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6. Extended and Associated Concepts 

Previous sections have introduced preparatory items. 
Then we defined the core concepts for MCS theory and 
cognition in general. Now additions follow for some other 
concepts related to cognition, yet less central. In this 
section: 
• We update the law for quantitative estimation of 

knowledge for cases where CS sometimes make 
errors. 

• We give special attention to time aspects and 
dynamics as they play a role just as important in the 
immaterial world of cognition as in physical domain. 

• We deal with control, an important application area 
for CS as well as an essential ingredient of cognitics 
(automated cognition). 

• We discuss the role of intelligence, possibly 
artificial, along with implementation media, such as 
thinking machines, computers, and robots. 

• Finally, a large subsection formally presents 
numerous notions of interest both for robots and 
humans, including truth, ethics, culture, life, and 
emotions. 

6.1 Knowledge Estimation in Presence of 
Errors 
In the previous section, we have presented the main 
concepts of MCS theory. In particular, we have defined 
the concept of knowledge for the basic case, namely for 
the case of systems that deliver correct information, 
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possibly limited to a small domain, but nevertheless 
always correct. (equation 10). Let us remind the reader 
of the MCS equation for assessing knowledge (K): 

K = log2 ( nout × 2 nin + 1)       [lin] 
 

Copy of (E10) 

ni is the quantity of information entering the system; no is 
the quantity of information that the system delivers. 
An extension is very useful for assessing cognitive 
properties in the case where a CS delivers information 
flows that are not totally error-free.22 In such a case, the 
system does not perfectly know a given domain (De). A 
particular output message (dosj) does not necessarily 
correspond to the correct corresponding one (doj). 
Equation 10 is still applicable, but the part of outflowing 
information that does not correspond to Dm (“noise” or 
“error”) should not be included in the equation yielding K 
quantity. The quantity of correct information that the 
system (nosc) delivered must then be estimated in each 
case and injected into equation 10: 

   bit  Equation  40 

We define the quantity nosc in the following way:   
 

   bit Equation 41 

                              
22 An early version of this extension can be traced to (R34), 
even though other symbols were used there. 
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 is the probability of occurrence of message jth 

flowing out of the system;  is the corresponding 
correct result (the result that belongs to the knowledge 
domain under consideration when a specific message,

 , enters the system). The term p ( dosj= doj )  is the 
probability of the jth output message of the system to be 
correct. The basic idea here is that the information 
quantity that each output message delivers should be 
weighted by its probability of being correct. If the system 
answers actually are all correct, the second term on the 
right side of equation 41 has a null effect (factor equal to 
1). Consequently, the two quantities  and  will be 
the same, as well as the quantity that the system 
delivers ( ). On the other extreme, if output messages 
are unrelated to the knowledge domain or, to put it 
briefly, answers are wrong, will be zero, leading to 0 
lin of knowledge, even if nos is much larger than nosc is. 

6.2 Time Aspects and Dynamics 
Many notions are common or similarly relevant both in 
cognition and many other domains. Some of the main 
ones include time and closely associated concepts, 
change, and dynamics. 
This section starts by defining time and presents 
considerations about change. Then we define dynamics, 
along with close concepts such as power, energy, 
motion, or forces. Combining with previous definitions for 
cognitive domain, this extends to the cross concept of 
cognition dynamics. We present classical analogies in 
the context of human psyche, including motivation and 
emotional forces, which may be pertinent in inspiring yet 
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new concepts in cognition dynamics and quantitative 
cognitics. Finally, we define agility. 

6.2.1 Time and Change 
Definition 
Time is the usual measure of change; its unit is the 
second (s).  
Discussion 
We usually consider time as a specific dimension of 
reality and it is given its own unit (second in the SI 
international unit system). But other views may be 
useful. For example, the ancient Greek Parmenides 
invites us to consider reality as a permanent whole 
without any dimensions at all (what is, is). In astronomy, 
it is particularly evident that yet another model of reality 
where time and space are dependent of each other may 
also have some merit. In astronomy, distances are 
counted in years. Reciprocally, far objects are old ones. 
Here, we discuss time more generally in its interrelations 
with change. Intuitively, it appears that time can be 
defined in reference to change. For example, the basic 
cycle of natural light change typically somehow defines a 
daylong time duration. 
More rigorously and quantitatively, a change is not 
sufficient intrinsically to define time duration. We need to 
consider other factors. There are numerous common 
laws (equations) in physics or cognition where time 
appears, which provides as many ways to define time. 
An amount of time may, for example, be precisely 
related to: 
• A change in space by a speed factor 
• A change in energy by a power factor 
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• A change in momentum by a force factor 
• A change in knowledge by an expertise factor 

In the context of automatic control, the time constant, a 
time-related feature of systems that qualifies their 
reaction time, is very significant. We usually understand 
the time constant of a system as the time it takes for the 
system to essentially reach its asymptotic response 
state, measured from the moment when a starting 
excitation is applied. 

6.2.2 Dynamics, in Physical World and in Human 
Psyche. 
Definition 
Dynamics describes second-order changes, typically 
including related causes, consequences and power 
aspects. 
Discussion 
We generally accept that dynamics refers to time 
evolution of physical processes. It may also refer to 
forces and motions of objects. The original Greek form of 
the word “dynamics” means “power.” 
Time has been shown related by a power factor to 
energy. Now we define energy, in general, as the 
product of a driving cause by the corresponding effect. 
For example, we may estimate an amount of energy in 
physics as the product of: 
• A force by a distance 
• A voltage by some electric charges 
• A pressure by a volume 

Similarly, since energy is the product of power by time, 
we can consider power as a general cause for change. 
Time then becomes simply the corresponding effect! 
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Experience confirms that, in the cognitive world as in the 
physical one, we subjectively estimate time as a function 
of changes. The factors linking changes to time are not 
always evaluated correctly. This principle sometimes 
leads to large errors in time estimation, especially when 
driving causes for changes are intense.  
For describing dynamics in human psyche, people have 
traditionally used analogies with the physical world: 
energetic person, powerful argument, and so forth. We 
give special places to mechanics, forces, and motion. 
Emotions and motivations are two words sharing the 
same Latin root (“movere” or “to move”), which is also 
found in the physically related concept motion. 

6.2.3 Agility 
CS have a real importance in as much as actions follow 
their deliberations. This is particularly relevant for control 
systems. A useful concept in this context is the one of 
agility. Agility combines the notion of time with the one of 
action. Both words, “agility” and “action,” share the same 
Latin root, “agere.” In current English, this is to act, to do, 
or to make. In common English, agility has a connotation 
of referring to animal or human motions in space. This 
character may, however, be generalized by an analogy 
to other forms of action. Quantitatively, let us define 
agility of a system as the inverse of its time constant, 
which implies 1/s as a unit. 

6.3 Control and Automation 
Automation and control may concern a large spectrum of 
processes and applications. In simpler cases, 
automation and control develop their effects without 
continuous reference to what happens in the controlled 
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systems. For example, typically, a switch simply turns off 
the light. Typically, a mass-produced printer draws a 
picture without much care about what the actual 
resulting colors are. But, for more complex cases, 
typically when external disturbances could significantly 
impact results, some feedback, some perception of what 
is happening, must be handled. The key word here is 
“closed-loop control.” In such cases, while control and 
automation can often help, it is also true that instability 
becomes a threat that we cannot ignore. We shall see 
what properties are critical for success in this regard and 
then mention what will be made about further 
improvements that may result from granting some 
autonomy to subsystems. 

6.3.1 Stability of Automated Processes 
In automation, the necessary approach for controlling 
systems that unpredictable perturbations affect includes 
an estimate of system state based on measurements or 
perceptive data, the so-called feedback. We commonly 
describe this type of control as closed-loop. Closed-loop 
control includes a broad range of situations and can risk 
instability or may not be feasible at all in some 
circumstances. It is shown subsequently that time 
properties play a crucial role in this regard. 
Schematically, we may encounter three classes of 
situations. The first two bring stable solutions; the third 
brings instability. 
1. It may sometimes be very easy to realize the control 

system, and the latter proves very effective. 
2. Sometimes, tuning is more difficult. Performances, 

without being as good (fast, accurate, or simple), as in 
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the previous example, nevertheless remain at an 
acceptable level. 

3. The third typical class of situations includes those 
cases where failure cannot be avoided: either the 
target system is hardly set into motion, or it moves in 
oscillatory or erratic ways. 

Now an extremely interesting indicator for possible 
system (in-)stability consists in the ratio (Ar) of two 
agilities, the one of controller (including perception, 
decision, action, and communication phases) versus the 
one of controlled system. With Ar larger than 20, a 
system typically belongs to class 1. Otherwise, the 
system belongs to class 2 unless Ar is smaller than 2. In 
which case, it falls into the third, unstable, case.23 
In summary, some time properties (here, respective 
agilities) turn out to be critical parameters or at least 
provide a critical indicator for successful system 
behavior in automation and cognitics domain.  

6.3.2 Closed-loop Control, Consequences on Time 
Properties, and Autonomy 
In fact and ultimately, the own (natural) time properties 
of a particular system may not always prove to be the 
relevant criteria for success. This is especially true in the 
context of perturbations and control and even more so in 
common practical cases where nonstationarities and 
nonlinearities prevail. 
Powerful systems are complex and usually organized as 
a multiplicity of interconnected subsystems (for example, 

                              
23 This can be straightforwardly deducted from previous 
publications, where the inverse of this ratio is used (the ratio of 
time constants) (R3). 
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hierarchies, cascades, parallel or distributed structures, 
and so forth). In this context, it is regularly verified that 
an elementary system may behave with much improved 
time properties with the help of a dedicated, autonomous 
associated control system.  
By this approach, far from representing absolute 
constraints, we may just view the natural time properties 
of an element as contingent features, which appropriate 
design and engineering may drastically improve at 
system level. The paradigm of granting local autonomy 
is also very effective in improving the potential agility of 
control system in the closed loop. 

6.4 Role of Cognition, Computers, Thinking 
Machines, and Robots 
This section extends the attention beyond core cognition 
domain, in the direction of concrete goals and 
appropriate means. After analyzing the role of cognition, 
either natural in humans or machine-based (including 
AI), we review the main implementation media types: 
computer systems, thinking machines, and robots. We 
consider performance rating and differences between 
robots and humans. 

6.4.1 Role of Cognition 
Cognition allows for high-performance information 
processing. The types of goals pursued may vary 
including for humans, entertainment, education, or 
meditation, for example. In the majority of cases, 
however, cognition has the role of delivering the critical 
information for doing well, of controlling with success.  
In the context of control and, more generally, 
automation, cognition may help in several regards. 
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Cognition supports modeling and, in particular, 
suppresses the need for many measurements, not only 
along the time axis in the future, but also virtually in all 
dimensions considered. 
A sufficient amount of application-dependant knowledge 
can support open-loop control (actions decided without 
any information perceived for the environment). For 
example, humans often walk up and down stairs without 
watching every individual steps. In the case of cognitive 
errors, attempt is typically made to walk one step more 
or less than the exact stair count, which may cause 
falling.  
Cognition can virtually help travel in space, time, and 
other dimensions yet, which tremendously increases 
control possibilities. 
Time  
A good knowledge of the controlled system allows for 
forecasting its behavior. By this token, a cognitic 
controller may, in principle, compensate for some or all 
control loop delays. This paradigm commonly allows for 
improvements in effective agility and, consequently, 
commonly brings significant improvements in 
performance. 
Space 
A robot sensor is located at any given time in a single 
place. If, at the same time, similar estimates by the 
sensor would be useful at other locations for control 
purposes, then modeling and, more generally, a cognitic 
approach can help to provide a flexible alternative. 
Other dimensions.  
The power of cognitics is not bound to extrapolation in 
time and space. Cognition can extend estimation 
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possibilities in domains out of physical reach. It is, in 
principle, quite universal and may often prove similarly 
useful in almost all other physical dimensions and more. 
For example, ABB robots accept a weight parameter in 
their “grasp” instruction, allowing for updates in the 
dynamic model of the arm and ultimately improving their 
performance. Cognitics improves the possibilities of 
classical regulation and often leads to drastic 
improvements in system dynamics and stability, 
including:  
• Identifying relevant factors and processes 
• Determining critical values 
• Sparing measurements 
• Reducing or sometimes even eliminating critical 

delays 
• Anticipating impacts and compensating for 

disturbances. 

6.4.2 Thinking 
Human cognition is implemented in the brain. It involves, 
as defined previously, high-performance information 
processing. Common language often refers to brain 
operation as “thinking” or “thought.” Nonhuman, artificial 
thinking might indeed be viewed as the essential 
operation of all CS (information processing). 
In the MCS model, however, and strictly speaking, 
thinking is neither relevant nor accessible actually. We 
represent CS here as behavioral systems, so only their 
output information is both visible and meaningful. If we 
assume the existence of machines that just think and do 
not generate output information, such would be useless 
and not differ from a passive wall or an empty socket. 
Considering this issue more broadly, however, we might 
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integrate the previous view and additionally define 
thinking as implicit, necessary internal processes 
accompanying the generation of (relevant output) 
information. Interestingly, if we split a system into 
subsystems, thinking might then gain in visibility and 
appear as the communication processes among 
subsystems with exactly the same pattern presented at a 
higher integration scale at the group level. 

6.4.3 Computer Systems 
Currently, computer systems provide the preferred 
implementation media for artificial CS. From the MCS 
perspective, via benchmarks and experimental tests, 
computer systems have been proven to be 
implementation media capable of high-cognitive 
performance levels in many domains, for example, 
learning with the cache-memory paradigm. In theoretical 
terms, however, we do not consider the physical nature 
of the implementation medium. 
More generally speaking, it may also be worth noting 
that people often unduly underestimate the role and 
need of computer systems and, more broadly, cognitive 
engines. Consider, for example: 
• A program in the context of Chaitin-Kolmogorov 

algorithmic complexity, or equivalently  
• Knowledge in the MCS framework, or as another 

instance 
• A statement in a computer program (for example, 

PI=C/2R) 
In all of these three cases, the final information cannot 
be elaborated and made available without time and the 
support of a physical system, the cognitive engine, 
typically nowadays a computer. In contrast to 
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information, which, in principle, is immediately available 
(for example, pi = 3.1416), the cognitive processes 
implied in these three examples require an engine and 
time to actually elaborate their outcomes. 

6.4.4 Machines 
The concept of machine presents mainly two aspects 
here: 
• A machine is not a human, but an artifact. 
• By etymology, machines have power. They act and 

make changes happen. 
From the MCS perspective, the first aspect is, in 
principle, irrelevant. We do not make any difference 
between humans and machines within the MCS 
framework. The second aspect has two contrasting 
components: 
• It is totally compatible with the MCS approach in 

placing the priority on results. 
• While in the MCS framework, CS generate relevant 

output information, and machines do more. They 
also provide the necessary physical contributions, 
notably in terms of energy, power, and mechanical 
structures, to change the world. 

6.4.5 Robots, as Human Clones? 
Karel Capek coined the word “robot” in a theater play 
where the main character, Mr. Rossum, created some 
kind of mechanical slaves (R8). From the very 
beginning, there has been ambiguity in the definition of 
robots. Some observers have understood Rossum’s 
creatures primarily as machines capable of providing 
flexible services to humans while others have been 
concerned with the idea of artificially replicating humans, 
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ultimately producing some kind of clones or 
Frankensteins. 
Clearly, the approach of the first definition is easier to 
adopt, that is, to develop robots according to 
requirements that are rather task-oriented and 
functional. Engineers typically favor this approach. It also 
offers additional benefits in terms of robustness and 
economy. Depending on applications, the requirement of 
exact similarity between robots and humans is 
debatable. In the same way as a plane does not need 
moving wings like a bird in order to usefully transport 
people and goods, the practical solution chosen for a 
robot to fulfill specifications may often be validly different 
from human solutions. For example, a robot might move 
on wheels rather than feet. Yet as the number of specific 
duties transferred from humans to robots increases, 
there may be more advantages to approaches where 
robots are more akin to humans: humanoids (limbs more 
or less similar to humans) or androids (very similar look). 
Here, some partial solutions are already welcome. Here 
also, if robots do their jobs better than humans, this is 
perceived as an advantage. 
The second definition puts humans in the center of the 
scene. Not only should robots be capable of performing 
duties similar to those of humans, that is, in order to free 
the latter from work and unwanted tasks, they should 
ideally proceed in the same way. Ultimately, robots 
should be human in all respects. Obviously, this task is 
impossible to fulfill via nonbiological means. Also in 
biological terms, if required, the most promising road 
might theoretically be to improve cloning techniques and 
then to concentrate on a very focused education. But 
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such a road is ethically, of course, completely 
unacceptable. It also practically leads to an impasse. 
To advocate the first approach again, it is worth noting 
that humans are already not only the result of a well-
defined, linear genetic legacy. In biology, lateral transfer 
occurs for some genes; external influences often 
randomly change some other genes. Moreover, when 
living, humans are increasingly complemented with 
artificial accessories like spectacles, auditory aids, 
pacemakers, wooden legs, artificial forearms and hands, 
infrared goggles or telescopes, cars, cellular phones, 
tools, pharmaceuticals and drugs, and so on. Bionics, 
cyborgs, and avatars are examples of engineered 
extensions of the human body. So to develop and 
provide robotic artifacts and accessories for the service 
of humans is surely a worthwhile and reasonable 
endeavor. Now to develop robotic machines specifically 
as exact replicas of humans may have some value in 
understanding better humans, but let us state here that 
this is typically not our goal. Even if it were the case, we 
would have to face the fact that we are very far from 
reaching such a goal. No robot is in sight yet, so akin to 
humans that a risk of schizophrenia would threaten it,  
letting it wonder whether it has become a human or still 
is a machine. 

6.4.6 Computers, Machines and Robots, to Help 
Humans 
It is suggested that machines are useful for mankind. In 
this sense, their development is an attractive goal. 
Aiming toward humanlike performance offers the 
potential to create the equivalent of many additional 
workers and helpers for humans, conveniently and 
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widely made available as, for example, in the case of 
automatic teller machines (ATMs). 
For this purpose, however, more than just computers are 
required. Namely, we need sensors to get information 
from the real world, structures, and actuators, as in 
machines, to physically change the world. Quantitative 
cognitics shows that AI-grade concretization processes 
(for example, path generation and grasping objects) and, 
even more so, AI-grade perception processes (for 
example, speech recognition, image understanding, and 
so forth) call for very large amounts of knowledge and 
expertise, usually much more than decision-making. 
It is therefore no surprise that we commonly take robots 
as targets and/or testbeds for progress in AI. Robots 
include sensors, decision-making resources, and 
actuators. They are often mobile and can communicate.  
Moreover, we know how necessary communication and 
a common culture are for human societies to develop. 
So it is natural to consider the problem of mixed human-
robot groups, that is, to develop cooperating robots. 
Such robots are complex, dynamical systems. On the 
engineering side, they appear to require, in addition to 
cognition, many other elements for successful 
implementation in real world and real time (R9). 
In the MCS framework, the behavioral approach and the 
target-oriented modeling call for the careful definition of 
selected goals. In fact, this should be considered to be 
just as much necessary for human cognition in general 
as for the purpose of designing expert artifacts. For 
example, the true path of the planet Earth around the 
Sun is not an ellipse. In this regard, notably, the 
RoboCup Initiative and, in particular, the league at home 
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(R10) provide an excellent context for improving the 
state of the art in AI, for designing novel thinking 
machines and novel robots, with the goal of serving 
humans. 

6.4.7 Human-like/ Human Performance Rating  
We often make informal comparisons between artificial 
systems and virtual humans that are not representative. 
The average human does not translate from one 
language to another, play chess, and so forth. Many 
humans do not read or write. If the criterion for AI is the 
lowest level of human performance, the level is low 
indeed. Moreover, even in the best of cases, humans 
require a lot of training to acquire their capabilities. 
Humans are often perceived as ideal learning systems 
(ideally intelligent agents) while they do actually suffer 
from severe limitations. The latter are obvious in the 
physical domain, for example: 
• Very limited vision and audio bandwidths. 
• No perception capability at all for magnetic fields 
• Inability to fly 

Many philosophers have observed severe limitations in 
the cognitive domain as well, for example, Kant and his 
necessary preexistence of categories for making 
perception possible (priority of knowledge on reality).  

6.4.8 Boundary between Robots and Humans in 
Cognitive Domain 

Considering the definitions of the MCS theory, we strictly 
confine our attention to cognitive abilities. In this context, 
the MCS model applies without distinctions to humans 
and machines, such cognitive agents being all 
represented as purely behavioral systems. Clearly, 
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robots already have the possibility to do better than 
humans can in quantitative terms: more bits of 
information perceived, more knowledge, more expertise, 
learning, intelligence, generated information, and so on. 
Differences remain in various domains that relate 
specifically to those domains: physical perception (for 
example, infrared is only perceived by some robots and 
not by humans) and action channels (for example, ten-
fingered hands with skin are currently only the features 
of humans), language, exposure to news, repeatability, 
and so on. 

6.4.9 Cognition versus Computer Speed, for 
Progress 

Computers are crucial for implementing nonhuman 
cognition processes. So it often seems that the basic 
processing speed of computers dictates cognitive 
progress. Typically however, this is not the case as 
cognition can bring much larger benefits. In support of 
these brief considerations, let’s revisit the striking case 
of the accurate estimation of pi. Computer technology 
here is a necessity. Yet reciprocally, a quantitative 
approach quickly demonstrates that cognitive processes 
can be a very powerful complement to mere computer 
technology. Pi can simply be defined as an infinite series 
as follows: Pi = 4*(1-1/3+1/5-1/7 …). 
Standard technology naturally gives a very limited 
accuracy. A standard, double-precision number system 
yields, say, forty significant digits. For sake of simplicity, 
it is nevertheless sufficient for this example to very 
optimistically assume that we can compute numbers with 
arbitrarily large numbers of digits. An elementary 
operation (denominator update, inverse, and subtraction) 
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takes one nanosecond on a computer. The accuracy of 
the estimate is here on the order of the number of 
operations, the nth element being worth about 1/n. By 
this token, after one second of operation, n = 109, we 
have an accuracy of about 10-9. This yields about 9 
significant digits for pi. The problem is that 
improvements are very slow, logarithmically slow. After 
one year of computation (107 additional seconds), we 
would have seven more significant digits (sixteen of 
them in total). If the computer could already have been 
computing since the big bang 1010 years ago, we would 
now have a mere ten additional significant digits, thus a 
total of twenty-six digits. The same applies for 
technology. Assume that computers could get a billion 
times faster. We would only get ten more digits from this 
series. Meanwhile, cognition, or we can loosely say, 
ingenuity, is unbelievably powerful. Twenty years ago, 
four thousand digits had been discovered. By 2001, 100 
million digits were identified. By 2005, 200 million digits 
(R5) were accurately identified! 

6.5 Extended MCS Definitions for Robots and 
Humans 
In addition to the core concepts of MCS theory defined 
previously, especially in section 5, it is useful to present 
many other commonly used notions in coherent way. 
They apply both to humans and robots, either because: 
• They share common grounds 
• Notions classically elaborated for humans can 

efficiently be reused for artificial agents  
• They may cooperate and therefore need to 

communicate with common references 
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• As recently introduced, some robots may even 
ensure the mediation between humans and 
machines. 

This section first extends cognition in the direction of 
represented reality and selected goals, yielding notions 
such as truth and wisdom. Then we develop the case for 
concretization, leading to creativity and ingenuity. The 
third subsection defines concepts ranging from simple 
deliberation to control and hierarchical structuring. 
Subsection 4 defines groups and associated features. 
Then definitions relating to operational, possibly 
reflective, behaviors follow (conscience, life, and so 
forth). Finally, this section discusses emotion-related 
topics. 

6.5.1 Truth, Ethics, Wisdom and Sapience (beyond 
cognition) 
Some additional cognitive elements are presented here 
(right, wrong, and sapience). Some provide the basis for 
other ones that reach beyond the purely logical world of 
models, out in direction of reality (true and false) and 
ethics (good, bad, and wisdom). 

A. Right (8a)   
Definition 
« Right » is the quality of a piece of information that 
complies with a considered law. Typically, it consists in a 
Boolean value. 
Discussion 
In MCS theory, « right » is the contrary of « wrong ».  
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Example 
For example if the considered statement (assertion, law) 
is the following: « Elements A and B belong to set C», 
then it is right that « A belongs to C ».  

B. Wrong (8b)   
Definition: 
"Wrong" is the quality of a piece of information that is 
contrary to a certain law. Typically, it consists in a 
Boolean value. 
Discussion: 
In MCS theory, "wrong" is the opposite of "right". 
Example 
If the considered assertions are e.g. « A and B belong to 
group C » and « element D belongs to group E », it is 
wrong that « A belongs to E ».  

C. True (9a)   
The correspondence link between model and reality 
defines the notion of sense or meaning, which is 
essential for semantics.  
Definition 
"True" can be defined on the basis of "right". True is 
equal to "right" when the considered law is as follows: 
« correspondence to reality ». Typically, it consists in a 
Boolean value. 
Discussion 
In MCS theory, "true" is the opposite of "false". 
For example it is true that braking reduces speed. 
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D. False (9b)   
Definition 
False can be defined on the basis of " wrong ". " False " 
is equal to "wrong", when the law is considered as 
follows: "correspondence to reality”. Typically, it consists 
in a Boolean value. 
Discussion 
In MCS theory, "false" is the antonym of "true". 
Example 
For example, it can be considered "false" that "braking 
increases speed”. 

E. Good (9c)   
Definition 
Good is defined on the basis of “right”: “Good” is “right” 
when the law to comply with is “to progress towards a 
defined goal”. Typically, it consists in a Boolean value. 
Discussion 
In MCS theory, « good» is the antonym of  « Bad».  
Example 
For example, we can consider as "good" to switch on the 
power circuits if the goal is for a robot to move. 

F. Bad (9d)  
Definition 
"Bad" can be defined on the basis of "wrong". " Bad " is 
equal to "wrong", when the considered law is as follows: 
"Progress towards a defined goal." Typically, it consists 
in a Boolean value. 
Discussion 
In MCS theory, "bad" is the antonym of "good." 



- 97 - 

Example 
For example, “to switch off the power circuits” can be 
considered "bad", if the goal is  for a robot to move. 

G. Wisdom (10)   
Definition 
Wisdom is a specific property of cognitive agents, 
referring to their ability to take good decisions (to be 
expert in delivering the messages that make agents 
reach a given goal). In MCS theory and quantitative 
terms, wisdom is estimated in Boolean terms, true or 
false, depending on whether the goal is reached or not 
Discussion 
To make it simple and easy, the quantity of wisdom for 
an agent, on a given domain, is estimated here in 
Boolean terms. Without being essential, a usual feature 
of wisdom is to relate to complex situations and major or 
meta goals: to survive, win the game, or gain a place in 
the Hall of Fame. 

H. Sapience (11)   
Definition 
Sapience is the essential property of cognitive agents 
(active structures capable of cognition). It appears under 
a number of signs, such as knowledge, expertise, or 
intelligence (already defined and made measurable in 
MCS theory). Quantitatively, sapience may be 
characterized by an index (isapience) in reference to 
humans (homo sapiens). Sapience (index) is thus a ratio 
and remains without specific unit.  
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Discussion 
We should estimate the performance levels of humans 
on the same basis as for artificial systems, even if only 
to quantify the wisdom. Initial assessments suggest the 
capacity of humans typically tends to be overestimated 
when this rating is done intuitively. A particular practical 
difficulty is that the characteristics of humans are 
stochastic variables. 

6.5.2 Creativity, Ingenuity, and Chance 
Cognition is necessary but probably insufficient for 
strong innovation. Cognition is necessary for managing 
complexity and providing knowledge, expertise, 
abstraction, concretization, and many other information-
based entities and processes. Today, a huge number of 
(artificial) CS routinely run successful operations and 
deliver information that is physically impossible to be 
stored a priori, in particular, impossible to be integrally 
collected from experiments or precompiled even with 
human help.24 
But how can we create new models and novel CS? How 
can we make quantum leaps in improvements? It is 
tempting to think of ingenuity, yet another cognitive 
property. But any attempt to quantify this property meets 
serious problems. 
We must conclude that, so far, the basis on which to 
quantitatively estimate this cognitive property is still 
lacking. Or we could view ingenuity essentially as just a 

                              
24 In quantitative terms, a rough and conservative upper bound 
on the knowledge (K), for which a direct memory-based 
implementation may technically be possible, can be estimated 
at 1,000 lin. 
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regular cognitive process, here immediately embedded 
in a specific domain of reality, which would call for 
infinite amounts of knowledge and expertise.  
In fact, there is chance, a powerful possible source for 
strong innovation. In the MSC model, the theory shows 
that random processes, as they are capable of 
generating an infinite amount of unpredictable 
information, actually prove to feature an infinite amount 
of knowledge in their domain. 
Thus, counterintuitively, we could consider ingenuity not 
as a specific cognitive property, but rather as a regular 
cognitive process that evaluates and keeps selecting the 
best of several (often many) models or CS that are 
randomly generated by external, random sources 
(chance). This strangely brings us back to trial and error, 
one of the most fundamental paradigms in AI.  
Chance is a possible source for innovation, but it may 
take a lot time for success. Here, cognition (experts) 
may bring advantages by keeping focus on minimal-
sized domains to explore, keeping track of 
improvements, and possibly tuning up contingent 
solutions. 
We will formally define creativity, ingenuity, and chance 
subsequently. A more general conclusion is drawn about 
numerous cognitive properties that can be defined on 
the basis of the small number of core cognitive 
properties defined in section 5. 
A. Creativity (12a) 
Definition 
Creativity is a particular kind of knowledge (measuring 
unit: lin) that features a concretization index higher than 
1. 
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Discussion 
We have already formally defined knowledge and 
concretization in the MSC ontology. The specificity of a 
creative system is simply to ensure that there be actually 
some concretization. (More pertinent, domain-relevant 
information is generated by the system than the system 
itself receives.) Creativity is a very common feature of 
CS. Here are two examples: building a family house for 
an architect or generating a navigation path from the 
living room to the fridge for a domestic service robot. 
B. Ingenuity (12b) 
Definition 
Ingenuity is a particular kind of knowledge (measuring 
unit: lin), that is, knowledge in a specific domain that 
contains reality as the input space and information about 
novel, improved CS (for example, better knowledge, 
better expertise, better intelligence, better abstraction, 
and so forth) as the output space. 
Discussion 
In fundamental terms, ingenuity is knowledge and, as 
such, already defined in the MSC ontology. The 
specificity of the domain is of a contingent nature in the 
same way as knowing a language contains the instances 
of knowing French or English. Ingenuity is a particular 
kind of knowledge, involving here a fourth specific 
cognitive domain. In particular, ingenuity may be 
considered as the most desirable and prestigious 
element in the following list of mostly existing MSC 
concepts related to the generation of information: 
• Expression (just generating any sort of information) 
• Knowledge (expressing correct information) 
• Expertise (doing it correctly and quickly) 
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• Intelligence (increasing expertise) 
• Creativity (knowledge with a concretization index 

higher than 1)  
• Ingenuity, (a kind of meta-intelligence by which the 

CS itself is reengineered to yield a quantum 
improvement in its expertise). 

C. Chance (12c) 
Definition 
Chance is a particular kind of knowledge (measuring 
unit: lin), that is, knowledge in a specific domain. The 
domain contains no input space, but an output space 
consisting of totally unpredictable information 
Discussion 
In fundamental terms, chance is knowledge and, as 
such, already defined in the MSC ontology. The 
specificity of the domain is that it consists of a totally 
stochastic output space. In quantitative terms, in as 
much as the information delivered is purely stochastic of 
potentially unlimited size, the quantity of knowledge here 
is infinite! As a consequence, in practice, to engineer 
chance (to design a perfectly stochastic source) is 
impossible. Pragmatic solutions, which are satisfactory 
for some applications, include approaching chance with 
finite resources (for example, pseudo-random 
generators) and, very often, redirecting information that 
an external, natural source of random information 
(chance) generates. 
D. About Secondary Concepts in MSC 
In the summary of this subsection, it appears that the 
core elements of MSC model, defined in small number, 
offer a strong basis for cognitive theories and are quite 
universal. In the same way as all electronic circuits are 
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made from a very few basic blocks (resistor, diodes, and 
so forth), all logic circuits could be made of NAND gates, 
or one could argue that virtually all texts could be made 
out of twenty-six letters, one hundred and twenty-eight 
ASCII characters, or two to four Morse-encoding 
moments. A wealth of other concepts is debated in the 
world of cognition and cognitics. We cannot ignore them, 
so we should also formally define them. But they should 
remain derivatives and sometimes simply special cases 
of existing, well-defined core concepts (domain, model, 
information, knowledge, expertise, and so forth). In 
mathematical terms, we could conclude that the number 
of concepts commonly discussed far exceeds the actual 
dimensionality of the space. 

6.5.3 Deliberation, Control and Hierarchical 
Structures 
A particular role of cognition is to guide systems toward 
a given goal. This implies operations that may range 
from simple cases to very complex ones, depending on 
considered applications. In the same order, we present 
the concepts of deliberation and control, possibly 
reactive and/or hierarchical, from MCS theory 
perspective. The section finishes with the cases of 
hierarchies (for example, analysis, design, or 
implementation) where processes schematically develop 
in top-down or bottom-up fashion. 
A. Deliberation (12d) 
Definition 
Deliberation is a particular kind of cognition, that is, 
cognition that involves a specific domain, typically 
decision-making.  
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Discussion 
The root of the word “deliberation” refers to Roman 
scales by which weights were measured. The basic test, 
“which side of the scale is lower,” maps directly to the 
central instruction of computers, the IF statement, as 
well as to Boolean, On/Off, reactive control systems. 
Here again, from the MSC perspective, we can consider 
deliberation as the regular operation of CS, and input-
output information flows (behavior) and time fully 
describe it. Thus, all derived cognitive entities 
(knowledge, expertise, complexity, and so forth) are 
equally applicable, and no new concept and units are 
required for them. We may also loosely consider 
“decision-making” or “data processing,” other words or 
expressions that are commonly used, as synonyms for 
deliberation. In fundamental terms, deliberation is 
cognition in a specific domain and, as such, already 
defined in the MSC ontology. The specificity of the 
domain is of a contingent nature, in the same way as 
knowing a language contains the instances of knowing 
French or English. Deliberation is a particular kind of 
cognition, involving here a fourth specific cognitive 
domain. 
B. Control (12e) 
Definition 
In the MSC theory, control is a particular kind of 
cognition, that is, cognition that involves a specific 
domain, where input information typically represents 
target and status data and output information represents 
commands. 
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Discussion 
In the MSC model, a control unit or agent is just a 
regular CS, which, like any other one, is fully described 
by its input-output information flows (behavior) and time. 
All derived cognitive entities (knowledge, expertise, 
complexity, and so forth) are equally applicable here. 
Generally speaking, control is a process that delivers 
commands to a system in order to reach some specific 
goal. While in general, the words “control” and 
“commands” imply power, forces, and/or other physical 
entities, we only consider the informational aspects here.  
C. Reactive Control and Other Control Types (13) 
Definition 
We have just defined control. The variations considered 
here, reactive and other ones (closed-loop and 
proactive), relate to specific domains in MSC theory. 
Discussion 
Reactive control is a particular type of control in which 
some particular kind of input information is relevant. 
Closed-loop control is a still more specific type of control, 
a subset of reactive control. Some input information 
entering the control system directly results from the 
commands (output information flowing out of the same 
control unit) issued to the system being controlled. (This 
specific input information is called “feedback.”) The 
opposite of reactive control would be proactive control. 
The control unit autonomously generates information. 
This information is transmitted as feed-forward, open-
loop information toward the system being controlled. 
When integrated in complex systems, control units may 
simultaneously feature multiple control types, depending 
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on the subsystems, information paths, and functions 
considered. 
Many control systems are effective and work exclusively 
on the basis of what is known a priori of the systems to 
be controlled. Yet when unknown elements, in particular, 
disturbances, have a significant impact on systems, it 
becomes necessary to adopt another scheme. 
Specifically, it is then useful to incorporate a feedback 
scheme from the systems being controlled. 

 

Fig. 10. An agent may 
successfully control a system in 
closed-loop mode only if its 
relative agility is better than 2. If 
the latter is smaller, we must 
consider a hierarchy of agents 
(figure from [R11]).  

In such circumstances (that is, considering reactive 
systems), the primary concern is the relative agility, 
including input and output communication delays of the 
controlling agents, compared to that of the target 
element to be controlled. As defined previously, we 
estimate the agility as the inverse of the global effective 
reaction time.  
The critical lower bound on the relative controller agility 
typically has a value of 2. Below the critical value, control 
becomes unstable or impossible. In these cases, 
changes are required. We classically explore three types 
of solutions: to increase controller agility, to decrease 
controlled element agility, or to split the overall system 
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into a hierarchy of subsystems that individually satisfy to 
the relative agility constraint (figure 10). 
For more than fifty years, control based on feedback 
measurements (closed-loop control) has gained a whole 
body of contributions, which today allow, for example, for 
the fast and accurate positioning of minute magnetic 
heads on dense hard disks as well as for the successful 
travel of space rockets toward precise targets at 
astronomical distances. 
As mentioned, control processes sometimes need to rely 
on some feedback components, and the effective 
management of delays is critical for the effective 
operation of such closed-loop control systems. For 
years, it has been successfully verified that it is often 
possible to compensate for some delays, typically in 
practice by a prediction strategy based on signal 
derivatives. Now, many new possibilities arise when we 
use cognition in control systems as a mean to improve 
predictions, thereby improving effectiveness and even, in 
many cases, automating novel applications, such as 
robots cooperating with humans in cognitively 
demanding applications. 
D. Top-down Approach 
Definition 
A top-down approach implicitly refers to a representation 
where multiple elements cooperate in a global system in 
a hierarchical pyramid. In the MSC model, considering 
multiple elements (agents and subsystems), there is no 
such exact notion of higher or lower levels (top-bottom). 
The MSC model is equally applicable at all granularity 
scales (that is, for the overall, integrated system as well 
as for each element, the top element, and any lower 
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level subsystem). The top-down orientation implies an 
attention first given to higher, more general levels then 
shifting to lower, more specific components. 
Discussion 
In the MSC theory, there is no such exact notion of 
higher or lower levels (top-bottom). Nevertheless, in 
MSC, three notions primarily relate to interaction 
between agents and may partly overlap with the concept 
of top-down approach: input-output information flows, 
abstraction-concretization processes, and integral 
systems versus more elementary subsystems.  
In the first case, the distinction and complementary 
aspects of input-output flows are obvious and apply 
symmetrically for each of the two communicating 
elements. Yet if the information does flow in a single 
direction, then one element is necessarily a pure 
transmitter, and the other one is a pure receiver. 
Schematically, top-level elements transmit information, 
and bottom elements receive it. Examples in the internal 
control hierarchy of a cooperating robot could be A, the 
control of stepper motors, or B, the synthesis of speech. 
Abstraction is the property of cognitive agents that 
generate less information than they receive. Conversely, 
concretization generates more information. In 
quantitative terms, we estimate abstraction as the ratio 
of input information quantity with respect to output 
information quantity and concretization as the inverse of 
the latter ratio. In general, top-down organization calls 
for concretization. The previous examples also apply 
here. 
The higher-level coordination level for motion control 
receives less information from previously (global target 
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values and parameters for motion law) than it generates 
(interpolated low-level intermediate targets at higher 
rates). 
The speech synthesis unit receives less information (text 
encoding) than it finally generates (CD-quality sound 
waves). Experience shows, however, that the correlation 
between the top-down approach and concretization is 
not absolute. High-performance cognitive approaches 
often rely, in some steps, on opposite strategies, for 
example, temporarily trading degrees of abstraction for 
improvements in fluency. For example, expertly sorting 
algorithms include the use of hash tables. Or in a 
subsumption architecture, lower-level reactions may 
cancel top-down command components. 
The MSC model is equally applicable at all granularity 
scales. This means that, if we analyze a system as a set 
of subunits, for each subunit, the same scheme is 
applicable. Similarly, if we consider several CS in an 
integrated, synthetic way, the resulting meta-system can 
also be represented with the same scheme. The notion 
of hierarchy is therefore orthogonal or independent of it. 
By analogy, notice that, in a human group, social 
hierarchies are generally not apparent in the 
infrastructure, for example, human individuals, 
communication, and transportation networks. For 
another example, we similarly define the usual objects in 
a program no matter where they lie in a hierarchy. 
Another challenge is the mesh aspect of 
interconnections instead of a simple, unidirectional level 
axis (implicit in a top-down structure). What is useful in 
such contexts is the consideration of multiple dimensions 
with parallelism and nested loops. The MSC model 
supports these views. 
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E. Bottom-up Approaches 
The discussion in the previous paragraph is applicable 
here by symmetry. In particular, while the previously 
discussed top-down organization was calling for 
concretization, here the bottom-up organization 
generally calls for abstraction. Examples of such bottom-
up, high abstraction cognitive processes for a 
cooperating robot include vision- and laser-based 
localization and speech recognition. 

6.5.4 Group, Global View, Atomic Members, 
Communication and Culture 
As complexity grows, agents tend to team up, thus 
yielding groups. In this case, new notions appear, 
involving a communication channel between members 
and a common culture (figure 11). In MCS theory, a 
group can globally be considered just like any other CS.  
 

 
Fig.11 Group. Individual cognitive agents (blue, brown) 
may coordinate each other, and thus may collectivety 
form a group . For this purpose, a common culture (C, 
green), in reference to some common domain of interest 
(D, yellow) and some communication media are required 
among agents (R: receive; T: transmit). At a metalevel, 
the individual members may be considered as merging, 
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to yield a new individual (the group) with its own 
collective model (C). 
Yet a group is, in principle, more than an individual. 
Additional concepts are useful to handle this more 
complex form of organization. After a general definition, 
three views follow where we then adjust the focus on the 
holistic aspects, the individual properties, and, finally, the 
way the structure can be coordinated. 

A. Group (12g)  
Definition 
A group is a particular kind of CS that consists in a 
number of individual cognitive agents.  
Discussion 
Definitions and metric equations in the MCS theory apply 
equally to individuals and groups. The behavioral model 
adopted in MCS can be applied at any granularity level 
in subsystems, for example: 
• At the global level of an entity 
• At a higher level of integration (group)  

Essential properties of a group organization typically 
include: 
• The holistic behavior of the group as a whole with 

collective properties 
• The individual properties of group members 
• The way the structure and means can support 

coordination. 

B. Holistic Group Aspects (12g.2)  
Definition 
In the context of MCS core theory, the behavior at global 
level, as an integrated CS, characterizes a group. 
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Quantitatively, all the metrics defined for the properties 
of CS apply 
Discussion 
With the behavioral approach, there is, in principle, no 
necessity to explicitly describe how groups are internally 
organized. Nevertheless, in the same way as cognition 
may address subsystems for analytical or design 
purpose, groups may be considered at the level of 
individual group members as well 

C. Members (12g.3)  
Definition 
In the context of MCS theory, group members appear 
themselves as ordinary, elementary CS with their 
respective cognitive domains mostly defining their 
specificity. 
Discussion 
Surprisingly, even though a group is essentially made of 
individual members, the observation of those members 
alone may not say much of overall group behavior 

D. Culture, Communication, Spirit (12c)  
Definition 
The socialization process operationally binds members 
together (coordinates them) in order to yield overall 
group properties. Prerequisites include the availability of 
a communication channel as well as some common 
culture and spirit. The communication channel is 
typically a physical medium that supports the 
transmission of information. We can view spirit and 
culture as a set of intangible underlying factors that 
ensure the coordination of individuals in order to achieve 
a specific collective identity and behavior. “Spirit” and 
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“culture” consist in a system of common, shared 
references, values, and objectives, in reference to some 
common domain of interest, which may dynamically 
evolve and yet do not exist actually (that is, out of the 
members). 
Discussion 
Consider an orchestra playing without conductor. The 
group is the orchestra, members are musicians, and the 
spirit is the name retained for what makes it possible for 
the musicians to play together in a coherent way, even 
when there is no additional conductor nor outside 
regulating factor. For humans, numerous kinds of other 
collective structures have been explored and defined in 
addition to the notion of group (sociology). Nevertheless 
for MCS theory, they can just be considered as domain-
specific synonyms. 

6.5.5 Consciousness, Conscience, Life. 
The quest for robots in domains traditionally reserved to 
humans goes on. As extended contributions, we soon 
discuss the notions of consciousness, conscience, and 
life, first in broader and somewhat informal terms and 
then with more focus and full compatibility with 
previously listed MCS theory items. 
Even though the direct requirement here for notions 
such as consciousness, conscience, or life remains 
debatable, the following arguments do have some value 
for the good functioning of machines and robots: 
• The potential for better human-robot communication 
• The legacy of millennia of cultural developments in 

the human context 
• A better understanding of human nature 
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A. Consciousness (12h)  
Definition 
In the MCS theory, consciousness is the ability of a 
system to perform its ordinary cognitive operations. Its 
value is essentially Boolean, corresponding to the 
presence or absence of consciousness. If required, we 
may address various degrees of consciousness in the 
MCS theory as different, specific domains for which the 
same definition of consciousness is applicable. (See the 
next discussion.) In quantitative terms, this simple view 
can be complemented by a finer attribute, a 
consciousness index, defined as the ratio of the current 
level of operation to the ordinary level of operation. Here 
in practice, we must make an exclusive choice, which is 
application-dependent. Either the Boolean view is 
sufficient, or the finer estimation approach is required 
instead. 
Discussion 
Consciousness, a property of CS, can be defined to 
different degrees. The etymology of the word contains a 
root referring to cognition (the ability of knowing) and a 
prefix referring to the subjective nature of this knowing. 
The very least degree of consciousness is simply 
awareness (the ability to know) and thus to cognitively 
accompany what is going on in the world around the 
cognitive agent. The ability to react may be a sufficient 
indicator of consciousness according to this minimal 
definition. A more demanding degree of consciousness 
calls for an additional, explicit, and regularly updated 
representation of what is going on around the agent. We 
attain a still higher degree of consciousness when some 
aspects of the agent itself are explicitly present in the 
agent’s representations. Self-contemplation is 
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performed. The scope of self-contemplation may vary, 
from some elementary self-aspects to more extensive 
ones, and even to the inclusion of external components, 
representing the environment in which the agent 
develops its activities. 

B. Conscience (12h.2)  
Definition 
In the MCS theory, conscience is the property of a 
cognitive agent whereby it includes in its cognitive 
domain some aspects of itself, its own behavior, as well 
as the environment and related customs. It finally adapts 
its own actions as a consequence. The value we can 
give to conscience is essentially Boolean, corresponding 
to the presence or absence of conscience. For finer 
quantization, all the core MCS notions essentially also 
apply here (for example, information, complexity, 
knowledge, and expertise). The possible specific 
differences in quantities relate to the respective, specific 
cognitive domains considered. 
Discussion 
We can use conscience as a synonym of 
consciousness, especially in the most demanding, self-
oriented interpretation given previously. In English, it 
includes a capability to judge the right or wrong 
character. In ethical terms, it includes an agent’s decided 
actions. Not only does conscience implicitly require that 
cognitive agents include representations of themselves 
and their own behavior in their cognitive domain, agents 
must also include representations of their environment 
with its associated operational modes. Only at this point 
can the possibility emerge for cognitive agents to 
compare their own behavior to the customary norms of 
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the environment and, consequently, to estimate the right 
or wrong character of their operations. Note that this 
description remains closely connected to the 
etymological meanings of the words ethics-environment 
and moral-customs. 
For the case of our current robots, for laymen, ethics 
may not look relevant. It may seem hard to imagine that 
robots would ever attempt to break ethical laws. 
However, to make a right decision, we must first address 
the ethical question. Moreover, even in an environment 
of very moderate complexity, we must make choices in 
the face of conflicting ethical values, depending on the 
level of attention. For example, a lower-priority law is 
broken for the sake of a more general one. Of course, 
environments may be of various complexities and may 
include, for example, groups of agents to which the 
agent with a conscience may relate in diverse ways. 
Notice that, in the MCS models as well as in reality, what 
is immediately apparent of agents is their behaviors. 
Consciousness and its derived benefits can still improve 
if agents express themselves and share some of their 
internal representations. Communication develops, 
flowers bloom, and animals develop a common culture. 
An interesting example of the change of perspective of 
robots with consciousness and self-reflection is the 
sequence shown in (R12), where robots gradually learn 
how range sensor data is best sequenced with an 
egocentric perspective. An assumption of stability and 
continuity of its environment, subsequently taking a next 
step, leads to the persistence and stability of the 
environment and, in this context, to the explicit 
representation of the self as a mobile and situated agent. 
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Fig. 12. An evident case of consciousness in our robots is 
illustrated here, where the application might relate to SLAM 
(simultaneous localization and modeling), pattern recognition, 
or positional calibration. In A, real egocentric distances are 
perceived with a scanning laser range finder. World elements 
are represented as green elements and are learned as a 
persistent model of the world. Later, in B, the robot is in 
another location with unknown orientation, along with the 
corresponding range data. A correlative process then matches 
data in B with elements of A. Consequently, the robot knows 
its own location in the world, C. 

 

C. Life (12i)  
Definition 
In MCS theory, life is the property of agents to be able to 
perform their ordinary operations. Its value is essentially 
Boolean, corresponding to life or death. In quantitative 
terms, this simple view can be complemented by two 
finer attributes, a life intensity index (ratio of current level 
of operation with respect to ordinary level of operation) 
and a lifetime (a duration measured in time units). 
Discussion: 
Life is the property of agents to be able to perform their 
ordinary operations. We can define life in different 
grades of increasing requirements, which we can also 
view as related to the time duration of ordinary operation 
(functional activity) without discontinuity. Thus, the time 
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unit seems to be a key unit here. In its most basic form, 
life refers to the operational continuity of agents 
themselves.  
A more demanding definition for life requires the ability 
of agents to actively sustain their own operations and 
possibly recover from failures, thus possibly extending 
the duration of functional activity.  
A still more demanding requirement refers to the ability 
to persist across generations. Life allows agents to 
replicate themselves, having children capable of taking 
over ordinary operations for longer periods.  
Time span of functionality can still increase if we 
consider life as beyond the scale of a species over 
evolutionary phases and even, ultimately, at the scale of 
development of a whole life tree such as ours on planet 
Earth from its very beginning billions of years ago to a 
yet undefined future.  
From a practical perspective, the first basic definition 
given previously for life is adequate, with variations in 
the possible requirements being equivalent to variant 
definitions for the cognitive agents under discussion 
(such as individuals, generations, and species). A 
quantization may be useful in terms of life intensity, finer 
than just a Boolean value, namely life or death. A ratio 
(life intensity index) of current level of operation with 
respect to the ordinary level of operations might do it. 
This may be closely connected to several other notions 
in psychology, for example, sleep, wakefulness, 
consciousness, and arousal. These connections, 
however, are not really dealt with here, even though the 
notion of domain in MCS context would allow to do it 
rigorously. More generally, the concept of life has led to 
many activities (for example, [R13], including an 
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associated full page just for the purpose of 
disambiguation of meaning); yet we could not find 
reference however for specific questions addressing 
living versus nonliving artifacts. 

6.5.6 Emotions 
Cognition generates appropriate information. This 
usually has some effect on status appraisal and 
emotions. The latter are possibly communicated at group 
level, and collective actions and changes often follow. It 
is worth extending MCS theory in the direction of  
emotions, establishing well-defined basis as well for 
human understanding as for robotic operations.  
This section first presents the main concepts in human 
emotions and the corresponding facial expressions. 
Then we consider images and icons. Other means of 
expression, follow. Finally, we review the role for 
emotions in cooperating robots. 

A Main Concepts in Emotions   
The world keeps changing, and so do robots, humans, 
and robots cooperating with humans. Now what makes 
humans change and drive their actions? Emotions. Do 
we need similar driving forces for robots? Should those 
be similar to human emotions? Furthermore, do we 
somehow need to express emotions and recognize them 
in others, that is, to communicate emotions? 
Change is general and often very abstract. We could 
view it as somehow analog to time. Physical analogies 
are often used in natural language in order to describe 
more abstract concepts. In that way, we often describe 
changes in reference to locations and space dimensions: 
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motion, speed, acceleration, forces, stability, and so 
forth. 
Emotions, by their etymology, clearly relate to motion. 
Resulting from changes in environment, perception, and 
possibly projected consequences related to convergence 
or deviation between status and goals, we can consider 
emotions as psychological forces that trigger subject 
activities toward strategic goals. We commonly refer to 
ten to twenty different types of emotions, including 
happy, surprised, and tired, for example. 
Definition 
In MCS theory, emotion is a particular kind of cognition, 
that is, cognition that involves a specific domain, typically 
involving the main, subjective, strategic attitudes 
Discussion: 
Experts suggest representing emotions as vectors in a 
two- or a three-dimensional mathematical space with the 
following primitives/dimensional axes: 
• Arousal denotes an activity level. Associated 

aspects include the ones of energy; quantity of 
perceived information, urgency, and intensity of 
desired changes; and planned actions. Arousal is 
always positive (or zero). 

• Valence denotes a happiness degree. It can be 
either positive or negative. We might interpret it as 
the current balance, as subjectively perceived, of 
overall benefits and costs. 

• Taken with less priority into account, stance is an 
attitude that may vary between open (open to 
dialogue or empathy) and closed (barring 
exchanges and cooperation). 
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B Images and Icons 
In general, the communication of emotions among 
humans relies primarily on facial expressions. Although 
naturally expressed in full (three-dimensional) space, we 
can perceive most of emotional content on the basis of 
simple images. 
It turns out that yet much simpler representations, such 
as caricatures or icons, cannot only retain essential 
emotion-related messages, but also may even be more 
expressive. Looking at some images of real people, 
along with a few RH3-Y samples of iconic facial 
expressions, can easily qualitatively validate this. 
People sometimes attempt to express machine emotions 
by a real, three-dimensional, dedicated physical 
structure. Even though approaches of this type have 
some advantages, such as consisting itself as a display 
medium, the efficiency in terms of communication of 
emotions is, to say the least, not obvious. Extending the 
idea of icons, it is possible to parameterize expressions 
so as to get continuous changes, in particular, for smiles 
or eye opening (figure 13). 

 
Fig. 13. The expression of emotions can be 
parameterized and continuously adjusted, for example, 
in terms of mouth shape and eye lid location (R14). 
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C Other Ways to Express Emotions  
Specific facial patterns primarily express emotions, that 
is, internal (psychological) forces for behavioral changes. 
Classically however, robots such as ours can also show 
their status, processes, and intentions, that is, more or 
less explicitly rendering their emotions on various control 
screens, devices, and panels.  

 
Fig. 14. The expression of status and intentions are 
classically described by panels, displays, and screens 
(a: Hornuss, b: Dude, c: programmable “eyes” or 
modulated headlights, RH3-Y; d: three-dimensional 
acceleration components on supervising computer; and 
e: set of RH3-Y interactive control screens) 

Now these classical data could be more systematically 
linked with iconic parameterizations (figure 15), leading 
to new head and facial expressions. 
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Fig. 15. The expression of robot status could evolve 
towards special adaptations of icons (a: mute behavior; 
b: leftwards intentionality; c: idem upwards; d: 
acknowledgement of common understanding. 

 
Fig. 16. General view of RH4-Y robot. 

RH-Y (figure 16) can express its emotions in many other 
ways yet: blinking (since 1998, considering previous 
developments in Eurobot context), speaking, delivering 
predefined sound waves (RH2-Y in Atlanta), or moving 
its body and arm in a way quite similar to dancing. And 
most naturally, those who know RH3-Y recognize some 
of its emotive states, such as when its motors enter 
some control modes or how its right wheel tends to lag 
behind when batteries run tired.  

D. What Role for Emotions in Cooperating Robots 
Emotions help explaining, in psychology, how humans 
make their short-term strategic choices. Emotions set a 
person in motion into a certain direction, toward a certain 
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goal. Now does referring to emotions make sense for 
robots? For some purposes, it is useful. For others, it is 
not.  
Useful Aspects 
The useful aspects of dealing with emotions include 
experience, legibility, and communication.  
Humans inherit thousands of years of experience 
relating to emotions. Attempting to transfer even just part 
of it to machines could be worth the effort. Describing 
machine attitudes and behaviors in terms of emotions 
may get them familiar and immediately understood by 
humans for design as well as for developmental, 
operational, and debugging purposes. Improved 
communication may be the strongest advantage that 
emotional messages provide. Thus in addition or as an 
alternative to other means, the exchange of information 
between robots and humans can be conveyed through a 
channel (emotional expressions) very natural for 
humans. 
Limits 
On the other hand, emotion-based approaches also 
have strong limits due to the nature of robots, media, 
and the domain of emotions itself.  
Robots are not humans. Their differences are far more 
numerous than potential similarities. So it is now 
generally considered preferable to let users clearly 
recognize that they do not deal with humans so as to 
limit impossible expectations. Furthermore, the same 
argument of legibility plays the opposite role for those 
observers who are more familiar with concrete machine 
peculiarities rather than human affect psychology.  
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Robots feature different media, such as color screens or 
blinking lights, that allow for novel communication paths.  
And in fact, even for humans, the domain of emotions is 
not so well-known today so transposing classical 
knowledge of this field to machines also means 
transferring current uncertainties. 
Synthesis 
Let’s attempt a balanced conclusion, drawing from 
general considerations as well as from specific RoboCup 
at Home (RAH) and RH3-Y contexts. Here, 
communication is also a key function to consider.  
It is universally true that reality is minimally upon reach. 
So it is critical here to also set the priority on a goal-
oriented strategy.  
Our goal relates to robotic help at home. And the latter 
has been further specified in RAH tests and rulebook. 
Cooperation between humans and robots is very 
important in this context. Communication helps in 
synchronization, for example, asking for or providing 
mutual help, coordinating intentionality, interest, 
attention, vergence (pointing with two eyes), or possibly 
threatening. For communication purpose and more 
generally successful interaction, expression seems 
mandatory. Very often, however, the latter simply result 
from functionality.  For example, an emotion may induce 
a backward robot gesture. For the observer, just 
perceiving that gesture may be sufficient to be aware of 
inducing emotion. 
We have given numerous examples for communicating 
emotions, in the study case of RH3-Y. Another 
interesting one (the latest one implemented and 
experimented with RH-Y) is the acknowledgement of 
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user commands in switching active or resting modes for 
the FastFollow test. Within a fraction of a second, the 
robot can react with a green or red panel color and 
diodes to control gestures of human users. This provides 
a significant improvement with respect to previous 
situations where we based dialogue on the perception of 
potential changes in robot motions (about ten times 
faster reactions).  
A final point relates to the nature of machines, which 
being different from humans, gains in being granted 
beyond classic human emotions, a wealth of variety in 
terms of internal affect forces and strategic attitudes. 
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7. Applications and Examples 

What benefits do we gain by adopting the described 
quantitative approach in cognitive domain, and how do 
we proceed? We can find an idea in these respects in 
three application areas described subsequently: soccer 
or domestic chores in RoboCup context, the economical 
evaluation of knowledge, and, finally, handling of objects 
in manufacturing operations. 

7.1 Robotics and AI: Soccer and Domestic Help 
A major initiative for cognitics for the development of 
machine-based cognition has been the launch of 
RoboCup (R15). In its basic formulation, RoboCup has 
brought together three major components: AI, robotics, 
and soccer. In later phases, pioneers have added a 
socially more important application area to the initial 
plan, domestic help relying on smart cooperating robots. 
In parallel to the World Cup of Soccer for humans (FIFA 
World Cup), RoboCup, another world competition for 
soccer, this one employing robots, is regularly 
organized. In 2010, FIFA Soccer competition was held in 
South Africa, and RoboCup was held in Singapore. The 
latter event has gathered three thousand active 
participants, traveling from forty countries. The main 
goal, defined since 1996, is to integrate AI and robotics 
for developing robots able of defeating the best human 
team at the World Cup 2050. In fact, the RoboCup 
initiative grows in several threads. In addition to leagues 
focusing exclusively on soccer (football), there is a 
particular application domain generally perceived of 
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higher priority for society, helping humans in domestic 
environment (league RoboCup @ Home25 or RaH).  
This year (2010), two new elements have appeared 
particularly significant.  
In the first case, with RH-Y team (R16), the mediation of 
a humanoid robot demonstrated just how dialogue 
between humans and other machines could conveniently 
happen. “Daniel,” sitting on a living room couch, 
responded positively to a proposal by the humanoid 
“Nono,” who, perched on the omnidirectional platform 
OP-Y, has alerted his partner RH-Y, who brings drinks 
and snacks to Daniel (figure 17–18).  

 
Fig.17 Nono, a humanoid of Nao type (lower right) 
mediates between humans and other machines. OP-Y is 
the platform on which Nono is installed; RH-Y is the 
robot who brought drinks and snacks. 
http://rahe.populus.ch . 

                              
25 Switzerland is represented in RoboCup @ Home since the 
creation of the latter in 2006 by a team of HESSO.HEIG-VD. 
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Fig.18 Detailed view of the mediating robot. On this 
picture, Nono wears an external microphone in order to 
broadcast his speech on the public facilities. 
In the second case, collectively for our league, part of 
the competition took place in a public facility, a self-
service store located in the heart of a shopping mall. In 
particular, our robot RH-Y, guided by the natural 
movements of a human, moved up to displays in order to 
learn where to search, later on independently, some 
items that the jury specified (figure 19). 
Forecasting the progress expected in the coming years, 
until year 2050, robots capable of helping at home and 
those capable of playing soccer will certainly overlap in 
the major part of their abilities.  
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Fig. 19 Robot HR-Y follows a team member, learning, in 
a first phase, how to get to the shelves where some 
objects that the referees defined are displayed. In the 
next phase, the robot is expected to again find the shelf 
on his own, moving to pick only one object as specified 
by referees and finally bringing it to the exit. 

7.2 Economical Evaluation of Knowledge  
The following example is interesting in illustrating the 
benefit of a quantitative cognitive estimation for 
economic assessment. The text has been published 
(R17–18) and is replicated here with minor differences 
(suppression of MCS declaration in order to avoid 
useless repetition). 
In the world, very large amounts of information are now 
routinely exchanged and processed. The current section 
presents various ways by which the proposed metrics for 
cognition can lead, in particular, to the economical 
estimation of information and knowledge values, as well 
as to the economical appraisal of associated CS. 
Information has been defined scientifically a long time 
ago. In particular, its quantitative assessment is usually 
not a challenge. In the section, a brief presentation is 
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made of basic equations along with a minimal context for 
its definition, including the concepts of model, 
messages, and domain. What is more uncertain is the 
economic assessment of information. Main difficulties 
are related to two factors: immateriality of information 
and the fact that a piece of information is, by nature, 
bound to a given context, singular domain and receiver’s 
model. In practice, such contexts are extremely 
numerous and diverse, preventing information, in many 
cases, from behaving as a commodity. Information 
elements most often appear as specific, heterogeneous 
objects rather than as standard occurrences of large, 
uniform classes. 
Information is now pervasive, yet something more 
powerful is emerging, knowledge, and associated ACS. 
The core property of CS lies in their ability (knowledge) 
to generate information, either spontaneously or reacting 
to external data and events. So far, the lack of accurate 
and quantitative definitions has forced experts to limit 
their economical evaluation of knowledge to individual, 
subjective, qualitative utility feelings, preventing them 
from estimating quantitative, collectively verified (market-
compatible exchange values). But the new definitions 
allow a drastic change of the situation. 
Technology in microelectronics today boosts supply of 
CS in various domains, causing a third revolution in the 
information world, in information domains. Where ACS 
can work, information requirements in terms of storage, 
replication, and transport costs are drastically reduced. 
Consequently, the economic value of information in 
those fields tends to sharply decrease. In addition to it, 
current CS have the interesting property of being able, in 
numerous cases, to react to their environment with high 



- 131 - 

knowledge and/or expertise levels for a very low cost. 
This possibility is new for man-made artifacts. 
Consequently, humans in those areas lose their 
economic value. As another, more positive 
consequence, the decreasing cost of CS make it 
possible to envision many applications that were not 
economically rational in the past or which are yet unfo-
reseen. 

7.2.1 Some Background 
For ages, mankind has been primarily busy with food 
management. In the last two centuries, industry (material 
processing) has become of utmost importance. Now the 
trend is clearly toward ubiquitous information-related 
activities.  
Our industrialized societies routinely exchange and 
process very large amounts of information, creating a 
very strong impact on world economy. Now people start 
to realize that something more powerful yet is emerging, 
knowledge.  
On the theoretic field, there is an increasing interest in 
developing relationships between information and 
economy (for example, [R19–21] or, in a more applied 
way, [R22–25]). See also (R26–27). Particular attention 
is given to this problem in the context of libraries and 
public information repositories (for example, [R28–29]).  
Similarly, various authors have studied and reported 
their thoughts about links between knowledge and 
economics. For example, at the beginning of the 20th 
century, C.S. Peirce laid some foundations to the 
domain (R30). Closer to our time, other investigators 
have also contributed to formalize it (R31–33). But so 
far, the economics of knowledge have been mostly 
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understood as the efficient allocation of resources for 
scientific inquiry. “Concern for answering our questions 
in the most straight-forward, most cost-effective way is a 
crucial aspect of cognitive rationality in its economic 
dimension” (R31, p.14). Moreover, the lack of accurate 
and quantitative definitions has forced experts 
themselves to limit their evaluation to individual, 
subjective, qualitative utility feelings, preventing them 
from estimating quantitative, collectively verified market-
compatible exchange values. 
Now knowledge has been defined scientifically, 
essentially by building on two well-grounded concepts, 
information and time. Appropriate metrics have been 
introduced (R34–36 and more directly, see previous 
pages). The goal of this section is to present various 
ways by which such metrics can lead in particular to the 
assessment in economical terms of information, 
knowledge, and ACS. 
The section mainly includes two parts. In part 7.2.2, we 
set the framework in order to quantitatively estimate 
cognitive properties and assess economical values. 
Then part 7.2.3 addresses the problem of turning 
quantitative physical and/or cognitive values into 
economic terms (considering jointly quantitative 
assessment and economical estimation). 

7.2.2 Theoretical framework 
In order to assess information and knowledge values in 
economical terms, one must stand at the crossing point 
of two main streams. One is of cognitive nature, so we 
first present essentials of a new metric system for 
quantitative appraisal of cognitive properties. The other 
one relates to the economical world, and we present the 
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corresponding ground definitions in the next section 
(Basis for Estimation of Value). 

A Assessing Information, Knowledge and Other 
Cognitive Properties,  in Quantitative Terms 
CS essentially process information. A certain quantity of 
knowledge and expertise can characterize such 
systems. But other properties are often of interest as 
well. We have defined these cognitive concepts 
previously in the book, so we do not duplicate the 
corresponding part of the original article here. 

B Basis for Estimation of Value 
Measuring an asset in physical or cognitive units is an 
important step toward its economic evaluation. But it is 
insufficient. Here we review the essence of what 
basically makes the value of an object. We assign a 
broad meaning to the word “object,” covering physical 
products as well as intangible ones, such as information, 
knowledge, or services. We discuss the impact on 
economical value both of objective and subjective 
criteria. 

B.1. Classic Definition of Economical Value 
In our market-driven economies, global supply/demand 
patterns essentially dictate economical values 
(elementary courses in economy). And there is an 
obvious link between individually perceived usefulness 
values and the collective building up of demand. 
Classically, we sort economical values in two groups: 
utility/usefulness values and exchange values. In the 
former case, qualitative, individual, and subjective 
aspects dominate. Quantitative and collective aspects 
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mainly characterize the second group, and it 
corresponds directly to the market price. 
Utility value . Utility value is the primary reason for a 
consumer to buy a good. It is very subjective, 
depending, for instance, on individual situation and 
experience, elements of proof at hand (logical 
reasoning), or reference to other people’s opinions that 
are themselves (subjectively) perceived as credible. 
By nature, utility value is rather qualitative. People 
like/need a good or do not. (Ultimately, they buy, or they 
do not). If they don’t like the good, that’s the easy case. 
But if they do, another problem usually arises. One must 
select among a number of competing possible buys, 
which one cannot simultaneously acquire all due to limits 
in buyer’s assets. 
Therefore, very naturally, a ranking appears by 
decreasing order of utility versus cost ratio, and this 
leads to the concept discussed next, exchange value. 
Exchange value . Intuitively (historically), value is (has 
been) perceived as tightly linked with rarity, but the 
current, well-accepted view is different. The critical point 
here is the relative weight in the market of demand 
versus supply. 
Utility and exchange values depend on each other. If 
many consumers perceive an object as very useful, its 
demand will grow. At least initially, its exchange value 
also will. Reciprocally, if a product becomes more 
valuable in exchange terms (that is, price increases), its 
perceived usefulness decreases. We also notice an 
additional regulatory effect. A higher exchange value 
(market price) tends to attract production resources, 
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which will then increase supply and thereby reduce 
price. 

B.2. Exchange value assessment 
As already theorized a century ago, exchange value 
assessment is inherently quantitative (metric). Price for a 
good appears to be valid for a certain quantity, be it per 
square foot, per pound, per hour, per unit, per share, 
and so forth. Of course, this unit alone is insufficient, and 
we must consider the specifics of market and good in 
appropriate detail (domain of validity).  
For example, the value of a share depends on the: 
• Corresponding company (for example, VRDE Ltd). 
• Stock exchange particulars (for example, Toronto). 
• Date (for example, opening on March 1, 2010). 

As a second example, consider the weight unit. The 
value of one pound is meaningless if other features such 
as material (for example, prime rib steak) and exchange 
place (for example, supermarket A&P) are not specified. 
Reciprocally, that is, if no proper metrics exist or 
considered, exchange value assessment becomes 
highly subjective. Imagine how difficult and unpredictable 
it would be for brokers to exchange shares without 
counting them or for people to trade meat without 
weighting scales! Yet this is what prevails today in the 
fields of knowledge and expertise. 
Value assessment is easily done for existing goods and 
markets. Direct reading of market situation and statistical 
tools provide a simple answer. For prospective markets, 
other approaches are required, such as expert 
consultation (Delphi studies), potential consumer 
inquiries, or econometric models. 
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Econometric models may seem to be the ultimate tool, 
but, as is well-known in weather forecasting or more 
generally in the theory of chaos, there is always 
somewhere a fundamental limit on predictability. For 
example, in the case of value assessment, notice that 
important market variations often result from a small set 
of mundane triggering events or even from a single one 
of them. In no way would it be practically possible to 
track the individual states of all such factors and to 
accurately model all of their possible interactions. 
The latter limitation applies as well to common goods 
than to yet somewhat exotic, cognitive products. But the 
latter have some other limiting peculiarities, which are 
worth examining.  

B.3. Limits to Our Discussion 
We restrict our analysis here to key aspects for the case 
of a free-market economy. It may be useful, however, to 
remind the reader about some known problems with this 
approach. 
Free-market negative aspects. Purely market-driven 
economies suffer from many shortcomings, including 
such things as: 
• Risk of oligopoly 
• Exclusion of social welfare and other ethical aspects 
• Time-horizon distortions 
• Difficulty of responsibility tracing 
• Possible conflicts between individual and collective 

interests 
• Health and life-threatening actions 
• Irrational consumer behavior 
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These restrictions not only hold for physical goods, but 
they also do for immaterial ones such as services and 
knowledge. 

7.2.3 Translating Quantitative Values into 
Economical Terms (Particulars of Information and 
CS) 
CS deal with information. Let us see first how we handle 
information from an economic perspective, and then we 
do the same for CS. 

A Information 
While we presented the concept of information from a 
technical angle, we subsequently review its most salient 
properties from an economical perspective. In 
conclusion, we show that uncertainties in economical 
appraisal of information are bound in practice by cost 
and/or gain opportunities. 

A.1 Bit and Related Units 
The well-accepted, theoretically sound unit for 
measuring information quantities is the bit. But all sorts 
of derived units are equally acceptable. In a manner 
analog to the meter, which is often replaced without loss 
of substance by millimeter, micron, light-year, mile, foot 
or inch, and the like, many alternate units for information 
exist in practice. To name a few, there are byte, nibble, 
dit (decimal digit), character, word, page, picture, CD, 
movie, and so forth. 
On the market, prices usually refer to units that not only 
measure involved information quantities, but 
encapsulate also some trade particulars. For example, 
page primarily designates a unit quantity of information, 
but, moreover, it implicitly refers to written material. 
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A.2 Short lifetime 
By essence, information brings up surprise and 
unpredicted messages. As one result, the lifetime of 
information items is very short. In principle, a second 
copy of a given message to the same receiver brings 
him or her no information at all. So information is a very 
perishable good.  

A.3 Subjectivity 
Theory shows that a given message may carry more or 
less information depending on what the receiving subject 
knows already and can predict (current state of 
receiver’s model).  
But this is by no means singular in economy. Nearly all 
(in particular material) goods can also have highly 
variable subjective values. In fact, if subjective values 
were not variable, no transactions would ever be made. 

A.4 Heterogeneity of information 
For a market to exist, there must be a certain quantity of 
standard good to exchange. Unique objects have a very 
high volatility because the law of large numbers does not 
smooth out the subjective utility assessment of 
transacting agents. By definition, we cannot expect the 
regulatory effect of production resource adjustments 
here. 
It turns out that information is not actually homogeneous. 
On the contrary, it is highly domain dependant. One 
megabit of television broadcast is not the same as one 
megabit of music. And as surveys regularly indicate, one 
megabit of television broadcast may have very different 
utility values depending on domain particulars: channel, 
time, actors, producer, and so forth.  
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Nevertheless, some domains are large enough so that 
markets develop, as proven by numerous everyday 
transactions where pure information is bought and sold. 

A.5 Immateriality 
In practice, information usually needs a physical support. 
As such, it is embedded in particular states of the real 
world, either as: 
• Primary phenomena (semantic contents relating 

directly to reality26) 
• Representative phenomena (symbols, conventional 

descriptions of reality or nonexistent worlds ; the 
latter is commonly the case in novels, science 
fiction, modal logic,27 and so forth.) 

But information is essentially immaterial, intangible. This 
view is consistent with the very definition and equation 
replicated previously. It is also obvious when one 
considers the virtually unlimited representational power 
of language or other expression media such as art and 
animated graphics.  
In summary, even though information is imbedded in 
material supports (for example, newspapers, Statue of 
Liberty, electromagnetic signals, CDs, and so forth), the 
latter usually have a minor economic cost. The 

                              
26 See, for example, the “model is the world” approach, which is 
popular in part of the AI research community. 
27 Modal logic does not restrict itself to a single, objective view 
of facts. It deals simultaneously with multiple, mostly virtual 
realities. For example, past, future, and hypothetic alternative 
worlds (if-worlds) may be considered in a common conceptual 
framework. 
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immateriality of information has important economic 
consequences, particularly the following ones: 
• No-cost copying/diffusion. In that regard, the printing 

industry has brought the first revolution in the 
information world, 

• No-time transportation. Electronic communications 
have induced a second revolution. 

Among other consequences, control of ownership and 
protection against theft are difficult to achieve. 

A.6 "Direct" information , versus Information about 
Knowledge 
Schematically, we can classify information in two groups: 
• In a first, main group, information consists simply of 

data, which are immediately useful for the receiving 
agent. We could refer to it as direct information. 

• In the second one, information is more subtle. It 
describes knowledge. That is, it represents cognitive 
structures and procedures, which, when 
implemented and run, will ultimately generate the 
pieces of information useful for the receiver. 

The limit between either type is not very sharp. 
Depending on the point of view, we can often classify the 
message in either way. What is direct information for a 
user can be knowledge representation for another one. 

A.7 Economic Value of Information. 
As seen previously, the concept of information is well 
understood, and it has some properties very different 
from those of physical goods. But nevertheless, 
assessing the economic value for a piece of information 
is a task that is not fundamentally easier or more difficult 
than for physical goods. On all markets where 
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information is exchanged (for example, databanks, 
libraries, books, weather forecasts, or movies), the 
practice is similar to the one for physical goods. For 
example, in the same way as one ounce of gold or one 
ton of coffee may fluctuate in value, so can information 
do (for example, one kilobit of weather forecast on 
central Europe, stock exchange data at a given point in 
time, one Spielberg’s movie on videocassette, ten pages 
of photocopies at the library, and so forth).  
We often use two particular ways to assess economic 
value for goods. These are fully applicable for 
information and knowledge as well are indirect. They 
consist in estimating the economic value in terms of: 
• Effectively incurred costs to acquire goods 

(information, knowledge, or something else). 
• Actual or expected gains, possibly as an alternative 

to other potential approaches 

B Cognitive systems 
On the economic scene, CS have been nearly 
exclusively human until recently. For a few decades, 
ACS have started to appear, but it is only since the 
1990’s with the progress in microelectronics technology 
that social impact has started to be significant. Impact 
has been strong in information economics, but also 
directly in cognitive activities where workers are 
displaced and new applications considered. Before 
attacking the case of ACS, let us briefly review the one 
of man. 

B.1 Economics of CS 1 - The Case of Man. 
For very long, humans have performed as an important 
source of mechanical energy as well as a CS. 
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Nowadays, except for limited areas (for example, 
sports), their professional roles are mainly related to 
cognition. Good performance levels in terms of 
knowledge or expertise are domain-dependant and can 
be attained by various modes of learning. 
An economic view of the situation makes it clear that 
supply/demand equilibrium has impacted the value of 
individuals. To reduce the cost of experts, appropriate 
actions have been taken in education and the 
dissemination of know-how (for example, public 
broadcasting services or patents). On the contrary, some 
professional corporations have artificially retained or 
increased the value of its members by provoking a 
higher demand (for example, advertising or problem-
making) or forcing a restricted supply through rules and 
other actions (for example, license systems, lobbying, 
and retaining know-how through secrecy). 

B.2 Advent of ACS 
Until recently, only humans and, to some very limited 
extent, living animals had been capable of cognitive 
performance. But now, in addition to them, progress in 
electronics and information processing (that is, by 
previously listed definitions, knowledge-related, or, in 
short, cognitive) engineering has brought about 
numerous and extremely powerful artifacts. 
ACS consist in electronic hardware (for example, 
analog/digital circuits such as modulators and logic 
gates) or programmable devices (computers, notebooks, 
microcontrollers for industrial control or videotape 
recording, and so forth). 
Performance levels in terms of expertise routinely could 
approximately reach in the year 2000, for ACS, tens of 
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millions (lin/s), at a cost lower than one hundred dollars. 
By comparison, the cognitive performance levels of 
humans in domains related to perception may be roughly 
similar. But by contrast, conscious cognitive activities, 
such as language processing or logical reasoning, fall far 
behind, as evidenced by psychological investigations 
with on the order of a few hundred (lin/s) only.  
What is missing in most cases today is the knowledge 
required to map ACS natural cognitive domain onto the 
ones that potential buyers find most useful. In other 
words, like in most cases for humans, the cognitive 
power is there, but many methodological developments 
(for example, education, training, or inquiry) remain to be 
done.  

B.3 Effect on Information Economics 
We stated previously that information replication was 
somewhat free of charge (no cost) and its transportation 
was immediate (no time). This is not quite true. In 
relative terms, cost (information value versus support 
charges) and delays (information transportation time 
versus human time scale) can be really very low. But 
they are not strictly zero. And in our developed world, 
information replication and transfers reach such large 
amounts (in bit and bit per second) that even those tiny 
values accumulate and globally reach considerable and 
sometimes quasi prohibitive levels. Knowledge helps 
here. 
Knowledge and, physically speaking, CS have the power 
of reducing by orders of magnitude the amounts of 
information to store, replicate, and transport for a given 
task. It follows from their definition that such systems 
can generate relevant information as many times as they 
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exist and immediately where they are. By the 
tremendous impact that this has on information world 
economics, CS28 are responsible there for a third 
revolution. 
 
 
Fig. 20. Schematic view of a 
cognitive library. Traditional 
delivery of stored information 
(left) and user-requested 
information generated with 
knowledge (right). 

 

For example, pocket calculators have replaced 
logarithms and trigonometric tables. In the 1990’s, the 
French Minitel system (mostly a set of ACS) had 
replaced tons and tons of dial books (raw information). 
Because of ACS (implicit knowledge), information 
exchanges on networks may also not explode as fast as 
expected by many observers today. Already very often 
today, sms, e-mails, or fax services replace traditional 
conversations over the line, sparing large amounts of 
transferred information. Actually the most significant 
change today in communication may be less the routing 
of information through the network lines (copper lines, 
radio waves, optical fibers, and so forth) than all the ACS 
connected to it (answering devices, electronic 
mailboxes, rerouting relays, and so forth). 

                              
28 Here we are talking of ACS. The contribution of man as a CS 
is also very important, but it is not new, so his contribution is 
already integrated and taken for granted here. 
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As an extreme case, in order to illustrate the power of 
knowledge and its potential impact on information 
management, one may imagine a cognitive library, a 
library capable of generating most of the desired pieces 
of information for the user. Consider two examples. 
Based on a single version of a book in store, it would 
automatically generate, on demand, numerous 
variations: 
• Translations in German, Russian, and Japanese. 
• Short and extended abstracts. 
• Lists of keywords 
• Reference maps 

Or the cognitive library would have music charts and 
profiles of music instruments, halls, and well-known 
artists. On this basis, it would, upon request, generate a 
particular mix, for example, Michael Jackson singing “La 
Marseillaise” at the Scala of Milan!  
Such examples are extreme, but something of the same 
nature has already started, for example, automatic setup 
of reference lists on the basis of multiple user-defined 
criteria and automatic retrieval of selected information. In 
fact totally conceptual in the first published version of 
this text, the first example is today mundanely 
operational, to a large extent, for example with Google 
resources. 
The formidable impact of ACS is not restricted to the 
information world. Their effect is important throughout 
society. 

B.4 Economics of CS 2 - The case of ACS 
ACS have many aspects that make them economically 
preferable to man in numerous domains. We discuss 
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three of their most salient advantages: ease of 
replication, scarcity of requirements in physical and 
environmental costs, and virtual ACS transport. 
Ease of replication. Since the 1990’s, microelectronics 
technology allows tens of thousands (and more) of 
complex integrated circuits to produce in one batch. 
Those ACS are extremely inexpensive. Moreover, they 
can be designed in order to be later tailored for various 
knowledge domains, in a way, for that point, similar to 
humans. Specialization occurs through programming. 
Here again, replication is virtually free. 
Scarcity of Requirements in Physical and Environmental 
Terms. Very small power requirements characterize 
current ACS. They are extremely small in volumes. The 
main material to process is silicium, which exists on 
Earth in practically limited quantity and immediate 
access. 
Transporting Information instead of Physical Cognitive 
Systems. Current ACS tends to be general purpose. 
They can exchange, at considerable distance, 
knowledge about particular domains. So information 
transfers (for example, programs) can replace transport 
of physical CS. This has also been the case for humans 
through the mechanism of local representatives. But 
ACS performances in terms of accuracy, domain size, 
speed, and cost differ by orders of magnitude. 

7.2.4 Synthesis 
We have discussed essentials of the concept of 
information and some of its economic aspects. Even 
though information items differ by various properties (in 
particular immateriality) from physical goods, the 



- 147 - 

process of assessing their economical value remains 
similar. 
In addition to the ones of information, we have also 
addressed the most substantial properties of CS. Among 
other consequences, this allows a clear quantitative 
assessment of their performances. Today, technology in 
microelectronics allows boosting of supply of CS in 
various domains. And the discussion shows they have 
important effects in terms of information economics as 
well as in terms of reactive behavior. 
After the invention of printing (Gutenberg) and long after 
the widespread use of electronic telecommunications, 
the current advent of CS brings about a third revolution 
in the world of information, where ACS can work. 
Information requirements in terms of storage, replication, 
and transport costs are drastically reduced. This 
revolution impacts the value of information, which, in 
such cases, tends to decrease sharply (for example, the 
value of tables of logarithms and printed encyclopedias). 
In this respect, ultimately, the value of a CS should be 
the value of the information it delivers.  
But in addition to their impact on the information 
economy, current CS has the interesting property of 
being able to react to their environment with high 
expertise levels for a very low cost. This possibility of 
complex reactive behavior is qualitatively new for man-
made artifacts. Consequently, humans in those areas 
lose their economic value. On another, more positive 
consequence, the decreasing cost of CS make it 
possible to envision many applications that were not 
economically rational in the past, for example, the 
twenty-four-hour per day opening time of cash delivery 
booths in thousands of locations. It also opens up other 
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fields that are yet unforeseen. Considering the potential 
of ACS as reactive systems, we must also appraise their 
values in this regard (not in reference to informational 
aspects). When competing on common grounds with 
humans, their value has an ultimate upper bound, the 
cost of humans they might displace.  
Humans lost a large part of their economic utility with the 
harnessing of modern sources of energy. Economically 
more attractive man-made artifacts are now increasingly 
challenging their role in cognitive activities. If market 
forces were let alone to work, they probably would, in the 
next phase, assign individual economic values to 
humans, that is, ultimately distribute wealth according to 
a primarily emotional rationale.29 Appropriate regulation 
policies could, however, keep this evolution under 
control. 

7.3 Film Cans and Manufacturing 
The following example is interesting in illustrating the 
benefit of a quantitative cognitive estimation of task 
requirements. It relates to a case representative of many 
manufacturing operations, the handling of film cans. The 
text has been published (R37–38), and we replicate here 
with minor differences (color images, competition results, 
and, in the last part of conclusion, reference to the 
general impossibility of keeping without loss the essence 
in a simple abstract).30  
                              
29 This has clearly started long ago for some stars in various 
entertainment businesses (for example, movies and sports) and 
maybe now starting to spread in other social activities (political 
leaders, religion communicators, and so forth).  
30 Fundamentally, the content of this publication is still 
absolutely valid today. 
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Assembly tasks may very much vary in complexity, 
depending on application specifics. Here the task is 
found moderately complex, as it implies about 1060 
possible states on the perception side, each involving 
about thirty thousand bits of action data. The section 
presents two systems conceived in our lab to perform 
the task. In one case, we achieve perception in a classic 
sense, by video camera and original vision software. A 
robot induces action. In the second case, we reduce 
input space from 1060 possible states to one by purely 
mechanical, a priori designed, task-oriented devices. We 
compare both approaches in a discussion where we 
refer to coercive, adaptive, and cognitive paradigms. 

7.3.1 Context 
At PerAc ’94 conference (From Perception to Action), a 
contest has been organized where competing systems 
should stack film cans in a limited amount of time. As 
starting state, ten cans are given, standing randomly, at 
least ten centimeters apart in a one-meter-diameter 
circle. The current paper reports on two systems liable to 
do the job and introduces first a common framework in 
which they can be compared. 
Current work relates somehow to research activities in 
various areas. Mostly, it relates to the general field of AI 
(for example, [R39–40]), robotics, and more specific 
domains, such as motion control (for example, [R41]), 
vision, or sensors (for example, [R42]).  
The work is well in line with previous research interests 
of some of us, namely the complementary, task-
dependent requirements for robotic and nonrobotic 
systems in industrial automation (in particular [R43]) and 
basic issues in cognitive sciences (R36). 
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7.3.2 Theoretical Background 
When facing a particular automation task, various types 
of approaches are possible. Here three of them, differing 
very much from one another, are discussed: coercive, 
adaptive, and cognitive paradigms. We will further 
illustrate the first two in the sequel of this article. 

A Coercive Methods 
A priori imposed, appropriate constraints may greatly 
reduce task complexity. For example, in practice, 
constraints are numerous in industrial automation 
(standardization, quality control, and so forth). In Per’Ac 
’94 assembly contest, task complexity is a priori reduced 
by constraints as per contest specifications (type of 
cans, size and shape of playground, and so forth) and 
can be further reduced in real time by a priori designed, 
blind mechanical constraints (7.3.4 Dedicated System - 
Case B). 

  
Figure 21. The assembly task of PerAc '94 contest is 
represented here as a particular polygon. 
Left: Schematic view of task domain. Coercive: Domain 
reduction by constraints. Adaptive: Task partially 
constrained. Some room is left where adaptive behavior 
is required. Cognitive: Cognition implies mapping 
appropriate structures on task domain. 



- 151 - 

B Adaptive Methods  
Modern automation resources allow machines to cope 
with tasks of relatively large complexity. The classical 
automation loop includes measurement, control, and 
output driving components. But now, measurement 
capabilities often increase, getting richer and more 
abstract and reaching toward perception. Similarly, 
control evolves toward decision and output function 
toward the general concept of action. 
Adaptation is possible today with reasonable time and 
resources, if task complexity remains within relatively 
narrow boundaries. For PerAc ’94, task complexity is 
mostly related to positional variations of film cans. Cans 
can be visually detected, and their positions can be 
estimated (perception). A robot can perform 
corresponding changes in mechanical motions (action) 
(7.3.3 Flexible, Robotic System - Case A). 

C Cognitivistic Approach 
Assembly task is a concept of infinite complexity, in the 
sense of common English as well as according to 
rigorous C-Model definitions (R36). In general and 
including the case for PerAc contest, appropriate 
specifications reduce concept complexity to a 
manageable amount. For PerAc, humans (organizing 
committee) have done the job. And teams attempting to 
solve the problem perform a similar cognitive work in 
reducing the scope of automation system concept and 
mapping it appropriately onto specified task domain. 
Such a job of reducing infinite cognitive domains to 
some simple particulars, yet not losing essentials, is not 
obvious. One may even question whether this is possible 
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at all. It is not easily achieved by humans and is totally 
out of reach of current man-made systems. 
Examples of simple CS (mobile robots) featuring some 
learning capabilities on relatively small domains are 
shown in (R36). 

7.3.3 Flexible, Robotic System (Case A) 
Some of us (in particular, S. Ernst and L. Venries) have 
worked on solving PerAc contest with an adaptive, 
industrial-grade robotic system. A mass-produced 
camera (Panasonic NVS-7) captures the scene from 
above the playground and delivers a monochromatic 
image to digitizing board. Even though the digitizer is 
capable of a good resolution (512 rows by 512 columns) 
and the camera has a better resolution yet, in our 
solution, a coarse image is found to be preferable. This 
alleviates computational load. During processing, 
acquired images are implicitly resampled at twenty-five 
times lower resolution, and the camera is blurred 
accordingly, for anti-aliasing purpose.  
On the software side, a dedicated program, running on 
an IBM-compatible personal computer (AT-286), 
achieves perception. The language is Borland Pascal. 
The PC is equipped with a simple Matrox image digitizer 
(PIP-1024). Images are scanned. When a bright pixel is 
detected, analysis is refined locally, using a centroid 
estimation algorithm. Centroid coordinates (coarse 
perceived can positions) are transmitted to robot 
controller via an RS-232 serial link. 
A finer positional accuracy of film cans is retrieved later 
by passive mechanical constraints, gripper jaw-centering 
forces.  
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Cans are picked at their estimated random location and 
stacked at a given place with a well-known six-degree-
of-freedom articulated robot, Unimation/Stäubli Puma 
560. If they stand out of direct reach (inside the small 
circle of figure 22 or outside the larger one), they are 
pulled toward playground center by the robot holding a 
wiper. Then visual analysis is performed again. 

   
Figure 22. Experimental implementations. Left: coercive 
system (no sensor). Right: adaptive system (robot with 
vision). 
In principle, the solution is simple, mostly because 
components are powerful: camera, two-dimensional real-
time digitizer, vision primitives, computer, and robot. 
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Puma robot controller is programmed in VAL, a 
language that supports Cartesian coordinates and full 
transformation matrix computation (that is, in practice, 
simple definition of relative coordinate frames).  
But in order to get the system working, additional 
ingredients have been found useful or necessary. 
Particularly worth mentioning are the following ones: 
• Interrupt-based (on PC-side) serial communication. 
• Appropriate gripper design, allowing for low-

accuracy visual estimation of target position and 
high tolerances in height specifications 

• Careful calibration process for camera frame and 
robot-base frame relative registration 

• Wiper similar to the one used on casino tables in or-
der to pull remote cans into the restricted Puma 
working surface. See the T-shaped tool in figure 22. 
The robot might have had direct, full access to the 
one-meter-wide playground if hung from the ceiling). 

• Nominal height (z) correction is a function of can 
position (x, y, or rather r, q) on playground 

7.3.4 Dedicated System (Case B) 
Some of us (in particular, A. Beran and O. Olmo) have 
worked on a dedicated solution for the same PerAc 
problem. Here the challenge was set to perform the task 
without any sensor. This approach is actually quite 
typical in industrial automation (coercive method).  
Humans do cognitive work at design time to make the 
system blindly remove all uncertainties at execution time 
by applying data-independent mechanical constraints 
(brute force approach). 
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A belt is manually laid around the playground during 
preparation phase. When execution phase starts, a DC 
motor winds up one side of the belt, which then sweeps 
the whole playground and gathers all cans in the outlet 
path (see figure 22, left). Temporarily trapped there in a 
queue, a fork successively takes cans, and these are 
carried up along an elevator (permanently moving belt) 
over a tube in which they are compelled to drop by a 
gauge (see figure 22, left). In the last phase of a run, the 
guiding tube opens up in order to satisfy the rule of free-
standing pile. 
Even though they are not implemented here with digital 
or electronic means, the mechanical system 
nevertheless features at least three regulatory effects: 
• Limited friction on the belt, which stops moving cans 

when they stand in the queue. 
• Synchronization of can progress along outlet with 

passing forks, through proper use of a mechanical 
lever 

• Position-dependent can stacking. A baffle (gauge) 
forces cans to drop out of elevator when they hang 
over the pile. 

7.3.5 Synthesis 
At first glance, cases A and B appear to be fully 
antinomical. The former system looks extremely flexible 
and adaptive, and the one of case B looks purely brute 
force and limited. In fact, they are not that different and 
share at least the following elements. In both cases, 
mechanical constraints make a critical job of 
variation/uncertainty removal. Time and human 
resources required for systems to get operational have 
been similar. Obviously, inherent task complexity is the 



- 156 - 

same for both. (PerAc contest rules dictate this.) What 
may be less expected is that they reach, on this singular 
domain, a similar level of knowledge (about 202 lin) and 
expertise (about 2 lin/s). In both cases, the amount of 
system cognitive properties (knowledge, expertise, and 
so forth) does not ultimately limit cycle time, but rather 
dynamic and power considerations related to mechanical 
motions along trajectories in space. 
Our experiments indicate that one of the most significant 
features of any task, in cognitive terms, is its inherent 
complexity. When the latter is small, many approaches 
may be successful, no matter what their specific nature 
is. If large, not a single solution is feasible. Another 
critical feature is the time allotted to do the task, which 
cannot be arbitrarily reduced. In C-model, complexity 
and time appear as significant factors in equations 
yielding knowledge and expertise, among other 
concepts. 
Here, the amount of complexity (C) can be estimated to 
be C = Itraj* (Nposx*Nposy)

Ncans = 30'000 *  (1000 * 1000)10, 
that is, about 3*1064 bit. The number of positions in x and 
y is 1,000 for each coordinate because playground 
diameter is one meter long and a one millimeter 
resolution is sufficient to do the job. And the information 
required to stack one can is related to the definition of 
the trajectory, varying in x, y, and z coordinates, starting 
from initial location on playground and leading to final 
place in stack. This is a relatively small amount of 
complexity in the context of our modern resources, but it 
is far from negligible. 



- 157 - 

Both approaches have been 
successful, demonstrating the 
capability of gathering ten randomly 
laid film cans into a ten can high 
stack within one minute. The system 
of case A (flexible robotic solution) 
has been further documented in a 
VHS movie shown at the 
conference. And the one of case B 
(sensorless coercive setup) has 
taken part to the contest and has 
won first place. 
Moreover, the definition of film cans 
for PerAc competition provides an 
interesting illustration of the loss that 
is practically always incurred when 
reality is represented by models. 
Film cans were available in large 
variability on the market, as partly 
shown in the side figure 23 (top 
picture). To prepare concretely for a 
solution, the participants enquired 
about the specifications of the cans 
that would be used for the official 
competition. 
 

Fig.23 The typical film can chosen 
for the robot competition was well 

defined, made available, but could 
not hold film rolls!,      

A few weeks before the competition, the organizing 
committee therefore produced and delivered a standard 
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can to the participants, as shown in the side figure 23 
(lower picture). In wood, with centering hole in lower part 
and slanted peg on top with some particular black 
regions, the can was surely adequate for the 
competition, but, ironically, could not contain a film roll. 
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8. Conclusion 

Having gradually replaced or assisted humans in their 
physical activities, such as power generation or 
mechanical work, automated systems have now begun 
to invade the cognitive domain.  
The cognitive sciences have, in one form or another, 
begun millennia ago, and the concepts of model and 
information are mainly used here as foundations for the 
definition of major cognitive, central elements of the 
MCS theory. 
Classical philosophers have rightly said, and the 
quantitative estimation that information theory allows 
confirms that the reality is perceptible only in infinitesimal 
part. If the goal of modeling were merely the 
representation of reality, failure would be almost total. 
But the goal is elsewhere. A good model has the great 
merit to allow CS, human or artificial, to reach the 
purposes for which they were defined. 
In a first part of the book, the MCS theory rigorously 
defines key cognitive variables, including complexity, 
knowledge, abstraction and implementation, expertise, 
concepts of learning, and intelligence. It brings over a 
metric system for these concepts. We also consider 
possible random errors. 
The MCS theory and quantitative techniques bring great 
clarity to the field, essentially rational, of cognition. They 
also reveal important limits. We must go beyond 
cognition and note that, in humans, other functions exist, 
especially intuition, ethics, and emotions. For every 
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phase of the modeling, this intuition bridges the gap with 
reality. Ethics are fundamental for guiding the choice of 
goals to achieve. Emotions ensure a possible transfer 
from the domain of cognition to the domain of action, as 
a process of physical implementation, which changes 
the world. 
In a second part, we have extended the MCS theory, 
and have formally defined associated concepts, in 
relation notably to time, control, thinking machines, 
robots, and humans.  
Finally, we report three sample applications where we 
can illustrate the use and benefits of MCS theory and 
cognitics. They relate to cooperative robotics at home, 
the economics of cognitive entities, and a process 
representative of automated manufacturing operations.  
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Appendices 

Appendix A. Summary Table of the Presented 
Concepts (Logical Order) 
The logical order adopted subsequently ensures that the 
definitions can fit, that is to say that, when each is 
declared, it can refer to predefined terms. 
 
Logical 
order of 
definitions 

Concepts  Table of content 
 

 
Core Cognitive Entities 
 
0 Cognition, Cognitics 5.1 
1.1 Model 2.2, 5.2 
1.2 Domain 5.2 
1.2 Time 6.2.1 
1.3 Memory 2.3 
1.3 Dynamics 6.2.2 
1.4 Agility  6.2.3 
2.1 Information 2.1, 5.3 
2.2 Message 5.4 
3.1 Complexity 3.3, 5.5 
3.2 Abstraction 5.6 
3.3 Concretization 5.7 
4.1 Knowledge 3.1, 5.8 
4.2 Experience 5.9 
4.3 Fluency 5.1 
4.4 Simplicity 5.11 
5.1 Expertise 3.2, 5.12 
5.2 Reductibility 3.3, 5.13 
6 Learning 5.15 
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7 Intelligence 5.15 
 

Extended and Associated Concepts 
 
8 Right 5.16 
8.1 Wrong 5.17 
9 True 5.18 
9.1 False 5.19 
9.2 Good 5.2 
9.3 Bad 5.21 
10 Wisdom 5.22 
11 Sapience 5.23 
12.1 Creativity 6.5.2 
12.2 Ingenuity 6.5.2 
12.3 Chance 6.5.2 
12.4 Deliberation 6.5.3 
12.5 Control 6.5.3 
12.52 Reactive Control and Other Control 

Types 
6.5.3 

12.6 Top-down Approaches  6.5.3 
12.62 Bottom-up Approaches 6.5.3 
12.7 Group 6.5.4 
12.72 Holistic Group Aspects 6.5.4 
12.73 Group Members 6.5.4 
12.74 Culture, Communication, Spirit 6.5.4 
12.8 Consciousness 6.5.5 
12.82 Conscience 6.5.5 
12.9 Life 6.5.5 
13.1 Thinking and Thought 6.4.2 
14 Robot 6.4.5 
12.10 Emotion 6.5.6 
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Appendix B. Summary Table of the Presented 
Concepts (Aphabetical Order) 
 
Concepts Contents 

Abstraction 5.6 
Agility  6.2.3 
Bad 5.21 
Bottom-up Approaches 6.5.3 
Chance 6.5.2 
Cognition and Cognitics 5.1 
Complexity 3.3, 5.5 
Concretization 5.7 
Conscience 6.5.5 
Consciousness 6.5.5 
Control 6.5.3 
Creativity 6.5.2 
Culture, Communication, and Spirit 6.5.4 
Deliberation 6.5.3 
Domain 5.2 
Dynamics 6.2.2 
Emotion 6.5.6 
Experience 5.9 
Expertise 3.2, 5.12 
False 5.19 
Fluency 5.1 
Good 5.2 
Group 6.5.4 
Group Members 6.5.4 
Holistic group aspects 6.5.4 
Information 2.1, 5.3 
Ingenuity 6.5.2 
Intelligence 5.15 
Knowledge 3.1, 5.8 
Learning 5.15 
Life 6.5.5 
Memory 2.3 
Message 5.4 
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Model 2.2, 5.2 
Reactive Control and Other Control 
Types 

6.5.3 

Reductibility 3.3, 5.13 
Right 5.16 
Robot 6.4.5 
Sapience 5.23 
Simplicity 5.11 
Thinking, thought 6.4.2 
Time 6.2.1 
Top-down Approaches 6.5.3 
True 5.18 
Wisdom 5.22 
Wrong 5.17 

 
Appendix C: Table of Probability Values, 
Logarithms and Information Quantities 
Table displaying some representative values of 
probabilities, logarithms, and corresponding quantities of 
information: 
 
Probability, p Probability, p 1/p Log10 : dit Log2 : bit 

1 1 1 0 0 
1/2 0.5 2 0.3 1 
1/3 0.33 3 0.5 1.6 
1/4 0.25 4 0.6 2 
1/8 0.125 8 0.9 3 

1/10 0.1 10 1 3.3 
1/100 0.01 100 2 6.6 

1/1000 0.001 1000 3 10.0 
1/1000000 0.000001 1000000 6 19.9 
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